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We present a comprehensive study of the dynamical properties of the quantum Heisenberg antiferromagnet
on a triangular lattice within the framework of spin-wave theory. The distinct features of spin-wave excitations
in the triangular lattice antiferromagnet are �i� finite lifetime at zero temperature due to spontaneous two-
magnon decays, �ii� strong renormalization of magnon energies �k with respect to the harmonic result, and �iii�
logarithmic singularities in the decay rate �k. Quantum corrections to the magnon spectrum are obtained using
both the on-shell and off-shell solutions of the Dyson equation with the lowest-order magnon self-energy. At
low-energies magnon excitations remain well defined albeit with the anomalous decay rate �k�k2 at k→0 and
�k� �k−QAF�7/2 at k→QAF. At high energies, magnons are heavily damped with the decay rate reaching
�2�k /�k��0.3 for the case S=1 /2. The on-shell solution shows logarithmic singularities in �k with the
concomitant jumplike discontinuities in Re��k� along certain contours in the momentum space. Such singu-
larities are even more prominent in the magnon spectral function A�k ,��. Although the off-shell solution
removes such log singularities, the decay rates remain strongly enhanced. We also discuss the role of higher-
order corrections and show that such singularities may lead to complete disappearance of the spectrum in the
vicinity of certain k points. The kinematic conditions for two-magnon decays are analyzed for various gener-
alizations of the triangular lattice antiferromagnet as well as for the XXZ model on a kagomé lattice. Our results
suggest that decays and singularities in the spin-wave spectra must be ubiquitous in all these systems. In
addition, we give a detailed introduction in the spin-wave formalism for noncollinear Heisenberg antiferro-
magnets and calculate several quantities for the triangular lattice model including the ground-state energy and
the sublattice magnetization.
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I. INTRODUCTION

Heisenberg antiferromagnet �HAF� on a triangular lattice
has been a focus of much attention as one of the basic model
systems in which geometric frustration and low dimension-
ality are expected to yield new physical phenomena. Al-
though available experimental realizations of the triangular
lattice antiferromagnet1–6 are described by such a model only
approximately, either due to anisotropies or because of addi-
tional interactions, the ideal nearest-neighbor Heisenberg an-
tiferromagnet on a triangular lattice given by

Ĥ = J�
�ij	

Si · S j �1�

remains the principal reference point.
The semiclassical S�1 triangular lattice HAF orders in

the so-called 120° structure �see Fig. 1�. Historically, it was
anticipated that enhanced quantum fluctuations destroy the
long-range antiferromagnetic order for the spin-1/2 model.7

However, calculations of quantum corrections within the
spin-wave theory have suggested that the 120° magnetic
structure remains stable even for S=1 /2.8–11 The early nu-
merical results for small clusters were less conclusive; some
supporting magnetically disordered state12 and some con-
firming the spin-wave results.13 Since the quantum Monte

Carlo suffers from the infamous sign problem when applied
to frustrated models, it is not until the Green’s function
Monte Carlo work14 that the magnetically ordered ground
state of the spin-1/2 triangular lattice HAF has been gener-
ally agreed upon. More recent series-expansion15 and
density-matrix renormalization group �DMRG� studies16

have confirmed the stability of the 120° spin structure for the
case of S=1 /2 and yielded the value of ordered moments
�S	
0.20, close to the previous result.14

FIG. 1. �Color online� The ordered 120° spin structure of the
triangular lattice HAF.
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Gradually, it has been recognized that the truly distinct
physics of the quantum triangular lattice antiferromagnet
concerns its excitation spectrum and the thermodynamic
properties. The anomalous behavior of the latter has been
discovered earlier by the high-temperature series-expansion
study.17 The temperature dependence of such quantities as
entropy or susceptibility exhibits significant differences be-
tween the triangular- and the square-lattice models: upon
lowering temperature down to about J /2 the square-lattice
antiferromagnet shows strong signs of ordering, while the
triangular lattice one does not. More recently, developments
in the series-expansion method have allowed to calculate the
excitation spectra of the noncollinear spin systems
directly.15,18 Numerical results for the magnon band of the
spin-1/2 triangular lattice HAF deviate substantially from the
linear spin-wave theory �LSWT�, with the overall band nar-
rowing by �50%, flattening at the top of the spectrum, and
extra “rotonlike” minima appearing at some special k points.
These results are so different from the well-known square-
lattice case, where the spectrum is renormalized only mod-
estly and almost uniformly upward, that Ref. 18 suggested
that at high energies the elementary excitations are not spin
waves but spinons. This hypothesis was questioned by the
subsequent studies which have looked into the role of mag-
non interactions within the framework of the spin-wave
theory.19,20 It was shown that the first-order 1 /S correction
strongly modifies the LSWT spectrum in an overall qualita-
tive agreement with the series-expansion data. Further de-
tailed comparison of the series-expansion and the spin-wave
spectra has confirmed their qualitative similarities and out-
lined remaining differences.15

Simply by the virtue of observing such significant differ-
ences in the triangular- and square-lattice spectra, these
works have explained the contrast in the thermodynamic be-
havior of the two systems. Since the spin-wave bandwidth of
the triangular lattice HAF is reduced to W
J and the other
features such as the rotonlike minimum are at the energies

J /2,15 the thermodynamic quantities must be dominated by
these short-wavelength features down to much lower tem-
peratures than in the square lattice case where the bandwidth
is W
2J and the spectrum has a rather benign shape.

In the recent Letter20 we have focused on another distinct
feature of the spin-wave spectrum in the triangular lattice
antiferromagnet: intrinsic damping due to spontaneous de-
cays. Note that although the spectrum renormalization in the
triangular lattice HAF is significant, the truly dramatic quali-
tative difference from the square-lattice case is the finite life-
time of the excitations at T=0. Aside from yielding a sub-
stantial damping for excitations in the most of the Brillouin
zone, the first 1 /S correction produces the logarithmic singu-
larity in the imaginary part of �k accompanied by the jumps
in the real part along some contours in the k space. We have
analyzed the origin of such singularities and have related
them to the topological transitions in the decay surfaces of
magnons, which are due to the saddle-point van Hove singu-
larities in the two-magnon continuum. Whether such loga-
rithmic singularities are the artifact of the 1 /S approximation
of the theory or are the true features of the spectrum was
only partially addressed in our work.20 For the decays into
magnons that themselves acquire finite lifetimes, singularity

will disappear in the higher 1 /S order and thus is not “real.”
However, if the singularity is due to decays into stable exci-
tations, we concluded that the singularity remains essential
and the magnon damping should remain very strong.20

We would like to mention that the numerical study did not
observe jumps in the real part of the spectrum nor it reported
the damping.15 This can be used as an argument against any
“physical” singularities. However, by design, the series-
expansion method finds the spectrum that is purely real.
Even with such restrictions, there where certain k points for
which the numerically obtained �k had a convergence prob-
lem, shown by large error bars in Ref. 15.

Altogether, the qualitative questions remain: why there is
such a substantial difference of the excitation spectrum in the
triangular lattice HAF from the more conventional square-
lattice case? How generic are the decays, singularities, and
anomalously large role of spin-wave interactions? What hap-
pens to the spectrum near the singular points? It is the pur-
pose of the present work to address these questions. First, we
would like to provide a consistent overview of the spin-wave
formalism as applied to the triangular lattice model in order
to demonstrate the origin of the drastic differences between
the spectra of the collinear and noncollinear ordered mag-
nets. Second, we will elaborate on our previous findings on
magnon decays and demonstrate that they must exist in a
wide variety of frustrated spin models. Finally, we would
like to extend our study beyond the on-shell approximation
of the previous works and clarify the fate of the singularities
in the spectrum.

The rest of the paper is organized as follows. Section II
provides a qualitative discussion of the origin of the spec-
trum anomalies in the triangular lattice HAF and suggests a
broader framework for the subsequent results. Section III
gives a detailed description of the spin-wave formalism for a
noncollinear HAF. Here, we also address the controversy
over two different results for the O�1 /S2� correction to the
sublattice magnetization of the triangular lattice HAF, which
exist in literature.10,11 The first-order O�1 /S� quantum cor-
rections for the spin-wave spectrum are considered in Sec.
IV. Here we discuss the characteristic long-wavelength and
short-wavelength features of both the spectrum renormaliza-
tion and the decay rates. In Sec. V, we discuss in detail the
kinematic decay conditions for a generic single-particle spec-
trum coupled to the two-particle continuum. The relation be-
tween the singularities in the renormalized spectrum and the
topological transitions in the decay surfaces is established in
this section. Section VI is devoted to the discussion of the
off-shell solution of the Dyson equation in the complex
plane. We show that in the strong-coupling regime, the solu-
tion may cease to exist and the magnon pole may disappear
in the vicinity of the logarithmic singularity. The results of
the numerical off-shell solution of the Dyson equation for the
triangular lattice HAF are presented and it is shown that the
damping remains very substantial. In this section we also
present the results for the spectral function for several repre-
sentative k points and the quasiparticle residues across the
Brillouin zone. We show that the log singularities become
even more prominent in the spectral functions, complicating
the conventional analysis. In Sec. VII we discuss several
examples of other models in which decays and singularities
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are ubiquitous, such as the easy-plane XXZ and orthorhom-
bically distorted J−J� models on a triangular lattice as well
as the XXZ model on a kagomé lattice. Section VIII contains
final conclusions and Appendixes A–E are used to provide
more technical details.

II. QUALITATIVE DISCUSSION

A. Cubic anharmonicities

In the case of quantum Heisenberg antiferromagnets on
bipartite lattices in D�2, the spin-wave theory agrees ex-
tremely well with the available numerical data, even for the
“most quantum” spin-1/2 square-lattice model.21–24 There-
fore, not only one needs to understand the apparent anoma-
lies found for the Heisenberg antiferromagnet on a triangular
lattice, but also to explain why such anomalies are not
present in the properties of the same model on bipartite lat-
tices. In the following we give qualitative arguments that the
unusual behavior stems from noncollinearity of spins in the
ordered state, which is, in turn, induced by geometrical frus-
tration.

In quantum magnets with collinear spin configurations,
the interaction between spin-wave excitations is described by
quartic and higher-order anharmonicities.25–27 In contrast, a
general quantum system with nonconserved number of par-
ticles is expected to have anharmonicities of all orders begin-
ning with cubic terms, which describe interaction between
one- and two-particle states. The common examples are
phonons in crystals28 and excitations in superfluid bosonic
systems.29 In quantum spin liquids, such as spin ladders and
various dimer systems, triplet excitations may also have
three-particle interaction terms.30,31

For the ordered spin systems, cubic anharmonicities cor-
respond to coupling of the transverse �one-magnon� and lon-
gitudinal �two-magnon� fluctuations, which would require
the presence of mixing terms between Sz and Sx,y spin com-
ponents. Such terms are absent in the collinear Heisenberg
magnets due to remaining U�1� rotational symmetry about
the direction of the magnetic order parameter. On the other
hand, in the noncollinear antiferromagnets spin canting
produces coupling of the transverse fluctuations in one
sublattice to the longitudinal ones in the others. As a result,
this yields cubic terms in the magnon-magnon
interaction.10,11,32–35

Noncollinear spin configurations in the Heisenberg anti-
ferromagnets can be induced either by an external magnetic
field or by frustrating interactions. In the former case, spin
canting and cubic anharmonicities are small in weak fields.
At higher fields, cubic interactions dominate and lead to
spontaneous magnon decays above threshold field H�.36–38 In
frustrated magnets, spin canting and cubic terms are substan-
tial already in zero field and thus play the key role in the
spectrum renormalization.

The above discussion creates a broader view on the or-
dered quantum magnets and their spectra. Magnets with col-
linear spin structures have excitations that are intrinsically
weakly coupled. Not only the energy is minimized by the
collinear spin orientation, but the interactions are also weak.
Having a noncollinear spin structure necessarily implies

much stronger coupling among the excitations. Thus, the col-
linear antiferromagnets should be considered if not as an
exception, but at least as a simplified subclass of quantum
antiferromagnets. Naturally, many of their properties that are
commonly assumed to be valid for all ordered antiferromag-
nets, such as the ubiquitously close agreement of the har-
monic theory with numerical results, should not be expected
to hold in general.

Somewhat more formally, the lack of cubic anharmonici-
ties in collinear spin systems results in the absence of certain
class of diagrams in the perturbative expansion. In the first
order in 1 /S, the only nonvanishing contribution is given by
simple “balloon” Hartree-Fock-type terms �see Fig. 3�. Since
these are � independent, the corresponding correction to the
spin-wave energy is a trivial redefinition of the interaction
strength. The first �-dependent correction appears only in the
second order in 1 /S and is already quite weak due to small
phase-space factor. In noncollinear spin systems, cubic an-
harmonicity generates “bubble” diagrams already in the low-
est 1 /S order, not only inducing a substantial spectrum cor-
rection but also providing a channel for the decays if the
decay conditions are fulfilled. In the triangular lattice HAF
both effects are amplified because of the lower dimensional-
ity and because the tilting angle between spins is not small.
Hence, the strong coupling of the longitudinal and transverse
modes in noncollinear magnets in general and in the triangu-
lar lattice HAF in particular is the key to understanding
strong renormalization of their spectra from the results of the
harmonic approximation.

B. Decays and singularities

Another important property of noncollinear magnets is the
ubiquitous propensity of the excitations to spontaneous de-
cays. The presence of transverse-to-longitudinal coupling is a
necessary but not a sufficient condition for decays. In addi-
tion, the energy and momentum must be conserved in the
decay process, yielding kinematic restrictions. Decays de-
pend, therefore, on the shape of the single-particle dispersion
that may, or may not, allow for spontaneous decays. While
we will give a detailed classification of various kinematic
conditions later �see Sec. V�, there are simple arguments for
the decays to exist in the triangular lattice HAF. The com-
plete breaking of the SO�3� rotational symmetry by the 120°
spin structure leads to three Goldstone modes:39 one at the
center of the Brillouin zone and two at the ordering vectors
�Q. The former mode can be related to an infinitesimal twist
of spins about the axis which is perpendicular to the spin
plane, while the other two correspond to twists about the
axes lying in the spin plane. The velocity of the latter modes
is smaller than that of the former one. Such a difference
guarantees that the energy conservation can always be satis-
fied for the decay of the fast quasiparticle into a pair of
slower magnons, similar to the decay of the longitudinal
phonon into a pair of the transverse ones in crystals.28 Since
cubic anharmonicities necessarily generate couplings be-
tween all magnon branches, this ensures finite lifetime for
spin excitations in an extended part of the Brillouin zone at
T=0. The above consideration is trivially generalized to
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other frustrated antiferromagnets where symmetry guaran-
tees existence of more than one type of the Goldstone mode.
We will elaborate on the decays in the XXZ anisotropic and
orthorhombically distorted triangular lattice antiferromagnets
�AFs� as well as on the kagomé AF in Sec. VII. We would
like to note that the kinematic conditions for decays can be
completely suppressed by magnetic anisotropies, still leaving
spins in a noncollinear configuration. In that case decays are
absent but the renormalization of the real part of the spec-
trum due to spin-wave interaction remains substantial.

In the following, we also discuss extensively the singu-
larities that occur in the decay rates of single-particle spectra
due to the van Hove singularities in the two-particle con-
tinuum. While the main conclusion is that the essential sin-
gularities are cut off either by the finite lifetime of the decay
products or by the nonsingular finite lifetime of the decaying
particle, the decay rates remain parametrically enhanced by
such singularities. A qualitative estimate of such a
singularity-enhanced decay rate in the two-dimensional case
is

�k � �V3
2/S�ln��S/V3

2� , �2�

where V3 is the strength of a three-particle decay vertex and
� is the momentum cutoff. Even for large values of spin S
the decay rate �k is logarithmically enhanced relative to a
perturbative result �k�1 /S.

III. SPIN-WAVE FORMALISM

A. Bosonic Hamiltonian

The spin-wave theory of collinear antiferromagnets on bi-
partite lattices is commonly formulated by introducing
bosonic operators according to the number of magnetic
sublattices.26,27 In the Heisenberg triangular lattice antiferro-
magnet spins form the three-sublattice 120° structure at T
=0 �see Fig. 1�. In order to go beyond the linear spin-wave
analysis,8,9 it is convenient to transform to a rotating frame
with the z axis pointing along the local spin direction. Then,
one needs to define only single species of boson operators

with the wave vectors that belong to the full paramagnetic
Brillouin zone �BZ� �Fig. 2�. We would like to note that even
in collinear antiferromagnets the above approach has sub-
stantial advantage when calculating higher-order spin-wave
corrections. Furthermore, such a “single-sublattice” proce-
dure has no alternatives when considering generic, incom-
mensurate �spiral-like� antiferromagnetic ordering.

As a first step, we assume that spins lie in the x-z plane
and perform transformation from the laboratory frame
�x0 ,z0� into the rotating frame �x ,z�,

Si
z0 = Si

z cos 	i − Si
x sin 	i,

Si
x0 = Si

z sin 	i + Si
x cos 	i, �3�

where 	i=Q ·ri and Q= �4
 /3,0� is the ordering wave vec-
tor of the 120° spin structure. The spin Hamiltonian, Eq. �1�,
in the new coordinate system takes the following form:

Ĥ = J�
�ij	

�Si
ySj

y + cos�	i − 	 j��Si
zSj

z + Si
xSj

x�

+ sin�	i − 	 j��Si
zSj

x − Si
xSj

z�� , �4�

where �ij	 denotes, as usual, summation over the nearest-
neighbor bonds.

The bosonization of Eq. �4� is performed via the Hermit-
ian Holstein-Primakoff transformation

Si
z = S − ai

†ai,Si
− = a†�2S − ai

†ai, �5�

where Si
�=Si

x� iSi
y with subsequent expansion of square

roots to the first order in ai
†ai /2S. Such an approximation is

sufficient to calculate the O�1 /S2� corrections to the ground-
state energy and to the sublattice magnetization and to deter-
mine the O�1 /S� correction to the spin-wave dispersion. The
resultant spin-wave Hamiltonian is given by

ĤSW = Ĥ0 + Ĥ2 + Ĥ3 + Ĥ4 + O�S−1� , �6�

where Ĥn denote terms of the nth power in the original
�Holstein-Primakoff� boson operators ai

† and ai. The first

Γ K

Y

M’ K’

M

X

(b)(a) (c)

FIG. 2. �Color online� Left panel: the Brillouin zone of a triangular lattice, lines are representative cuts. Central panel: 3D plot of the
linear spin-wave energy �k in the triangular lattice HAF. Right panel: intensity plot of �k. Note different velocities of the Goldstone modes
and different symmetries of the dispersion near � and K �K�� points and the saddle point at M �M��.
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term in this expansion is the classical energy Ĥ0=− 3
2JS2N.

Terms that are linear in ai and ai
† vanish automatically be-

cause the 120° spin structure corresponds to a minimum of
the classical energy. Note that the Hamiltonian �6� also yields

a series in powers of S, with Ĥ0=O�S2�, Ĥ2=O�S1�, Ĥ3

=O�S1/2�, and Ĥ4=O�S0�, respectively. The subsequent treat-

ment of ĤSW consists of diagonalizing the harmonic part Ĥ2

exactly and, then, treating Ĥ3 and Ĥ4 as perturbations.

1. Linear spin-wave theory

Noninteracting magnons are described by the LSWT or
the harmonic approximation. After the Fourier transforma-

tion, the quadratic part of ĤSW reads

Ĥ2 = �
k

Akak

†ak −
1

2
Bk�ak

†a−k
† + a−kak�� ,

Ak = 3JS�1 +
1

2
�k�, Bk =

9

2
JS�k, �7�

where �k is a sum over the nearest-neighbor sites

�k =
1

6�
�

eik� =
1

3
�cos kx + 2 cos

kx

2
cos

�3

2
ky� . �8�

Diagonalization of Ĥ2 is performed with the help of the
canonical Bogolyubov transformation

ak = ukbk + vkb−k
† �9�

under conditions uk
2 −vk

2 =1 and

uk
2 + vk

2 =
Ak

�Ak
2 − Bk

2
, 2ukvk =

Bk

�Ak
2 − Bk

2
. �10�

As a result, the linear spin-wave Hamiltonian takes the fol-
lowing form:

Ĥ0 + Ĥ2 = −
3

2
JS�S + 1�N + �

k
�k�bk

†bk +
1

2
� . �11�

In the harmonic approximation, spin waves are noninteract-
ing bosons with the energy

�k = �Ak
2 − Bk

2 = 3JS�k, �12�

where we define the dimensionless frequency

�k = ��1 − �k��1 + 2�k� . �13�

The shape of �k is shown in Fig. 2. The harmonic spectrum
of the triangular lattice HAF has several distinct features.
The intensity map clearly shows that the velocities of the
Goldstone modes at � �k=0� and K, K� �k= �Q� points are
different. They are given by

v0
�0� = 3JS

�3

2
, vQ

�0� = 3JS�3

8
. �14�

Another notable feature is the clear threefold symmetry of
the modes near Q points. Instead of the usual convex and

isotropic form, the spin-wave energy at small k̃=k−Q is
nonanalytic with varying convexity

�k 
 vQk̃�1 − �
k̃�, where �
 � cos 3
 . �15�

The overall shape of the dispersion is also more complicated
than in the square-lattice antiferromagnet. At the M point, the
center of the BZ edge, �k has a saddle point with the energy
roughly half of the bandwidth. Thus, already with the har-
monic spectrum the thermodynamic response at intermediate
temperatures should be quite different from that in the
square-lattice antiferromagnet.

We introduce now several nonzero Hartree-Fock averages
that contribute to the spin-wave corrections of many static
and dynamic quantities of the triangular lattice HAF

n = �ai
†ai	, m = �ai

†aj	, � = �aiaj	, � = �ai
2	 . �16�

In the harmonic theory these are expressed as linear combi-
nations of the two-dimensional �2D� integrals

cl = �
k

��k�l

�k
, �17�

with l=0,1 ,2 �see Appendix A for further details�. In par-
ticular, the linear spin-wave correction to the staggered mag-
netization, �S	=S−�S, is given by

�S � n =
1

4
�2c0 − 2 + c1� = 0.261 303 2. �18�

2. Spin-wave interaction: Cubic terms

The cubic interaction terms Ĥ3 in Eq. �6� have no analog
in collinear magnets. They originate from the coupling of
local Sz and Sx spin components in Eq. �4�. In terms of the
original boson operators �5� the cubic interaction is given by

Ĥ3 = J�S

2�
�ij	

sin�	 j − 	i��ai
†ai�aj

† + aj� − aj
†aj�ai

† + ai�� .

�19�

For the collinear spin structures, sin�	 j −	i��0 and the cubic
terms vanish identically.

Performing consecutively the Fourier and Bogolyubov

transformations from ai
†, ai to bk

†, bk operators in Ĥ3 we
obtain the interaction terms expressed via the “new” bosons

Ĥ3 = �
k,q


 1

2!
�1�q,k − q;k�bq

†bk−q
† bk

+
1

3!
�2�q,− k − q,k�bq

†b−k−q
† bk

† + H.c.� . �20�

Generally, terms linear in bQ
† and bQ also appear after the

above substitution. They represent quantum correction to the
pitch angle of the spin helix33,40,41 or to the spin canting
angle in an external magnetic field.34,36,42 Such a correction
vanishes in the triangular lattice HAF because the ordering
wave vector Q corresponds to a stable symmetry point in
BZ.
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The first term in Eq. �20� describes interaction between
one- and two-magnon states and is symmetric under permu-
tation of two outgoing momenta. We call it the “decay” term,
although the decay processes may be only virtual. The sec-
ond term in Eq. �20� corresponds to the spontaneous creation
of three magnons and we refer to it as to the “source” term.
The source vertex is symmetric under permutation of all
three momenta. Making the energy and spin dependences of
the three-boson interactions explicit, we define dimension-
less vertices related to the original ones �20� by

�1,2�1,2;3� = 3iJ�3S

2
�̃1,2�1,2;3� , �21�

with �̃1,2 given by

�̃1�1,2;3� = �̄1�u1 + v1��u2u3 + v2v3� + �̄2�u2 + v2��u1u3

+ v1v3� − �̄3�u3 + v3��u1v2 + v1u2� ,

�̃2�1,2;3� = �̄1�u1 + v1��u2v3 + v2u3� + �̄2�u2 + v2��u1v3

+ v1u3� + �̄3�u3 + v3��u1v2 + v1u2� , �22�

where ui, vi are the Bogolyubov parameters �10� and the
function �̄k is defined as

�̄k =
1

3
�sin kx − 2 sin

kx

2
cos

�3

2
ky� . �23�

The diagrammatic representations of the decay and the
source vertices are shown in Figs. 3�a� and 3�b�, respectively.
The above form of �1,2 coincides with the expressions used
by Miyake.10,32

3. Spin-wave interaction: Quartic terms

The last term in the spin-wave Hamiltonian �6� represents
the quartic terms

Ĥ4 =
J

4�
�ij	


− ai
†aiaj

†aj +
3

4
�ai

†aiaiaj + aj
†ajajai�

−
1

4
�aj

†ai
†aiai + aj

†aj
†ajai�� + H.c. �24�

After the Bogolyubov transformation and normal ordering of
b operators, the interaction �24� is replaced with

Ĥ4 = �E4 + �H̃2 + H̃4, �25�

where the first two terms are the Hartree-Fock corrections to
the ground-state energy and to the magnon self energy, Figs.

3�c� and 3�d�, respectively. The magnon self-energy �H̃2

contains both the diagonal and the off-diagonal terms,
while for the square-lattice HAF the anomalous off-diagonal

terms vanish. The final term H̃4 describes two-particle scat-
tering processes. Similar to the case of the collinear
antiferromagnets,27 this latter term yields only higher-order

1 /S corrections compared to �E4 and �H̃2 and is, therefore,
neglected in the present work.

To derive the explicit form of Eq. �25�, it is technically
more straightforward to apply the Hartree-Fock decouplings
�16� to Eq. �24� and use the Bogolyubov transformation in

�H̃2 afterward. This is analogous to the treatment of quartic
terms for collinear antiferromagnets.26 With the details of
this derivation delineated in Appendix A, we simply list the
end result for the correction to the ground-state energy

�E4 = −
3

8
J
�c0 + c1 − 2c2 − 1�2 −

3

2
�c1 − c2�2� �26�

and to the harmonic spin-wave Hamiltonian

�H̃2 = �
k

�k
�4�bk

†bk −
1

2
Bk

�4��bkb−k + b−k
† bk

†� , �27�

where the first-order magnon energy correction and the
anomalous self-energy terms are expressed as

�k
�4� =

3J

4�k
��k

2�4c0 + c1 − 5c2 − 4� + �k�2 − 2c0 + c1 + c2�

− 2c0 − 2c1 + 4c2 + 2� �28�

and

Bk
�4� = −

9J

8�k
�1 − �k��c1 + 2c2�k� , �29�

respectively.

4. Effective Hamiltonian

With the triangular lattice model discussed in detail, we
would like to outline the structure of the spin-wave Hamil-
tonian for a generic noncollinear spin system. After the
Holstein-Primakoff and Bogolyubov transformations with
subsequent renormalization, when necessary, of the classical
configuration, the spin-wave Hamiltonian takes the form of
a polynomial of terms with increasing number of bosons,

H̃0+H̃2+H̃3+ . . ., and decreasing power of S. Therefore, the
spin-wave expansion to order O�S0� will always result in an
effective Hamiltonian

H̃eff = �
k

��̃kbk
†bk + Vk

od�bkb−k + b−k
† bk

†��

+ �
k,q

�Vk,qbq
†bk−q

† bk + Fk,qbq
†b−k−q

† bk
† + H.c.� .

�30�

The spin-wave Hamiltonian for a collinear antiferromagnet
is the restricted form of Eq. �30� with no three-boson terms
present. The dynamic interaction among magnons in such a
system occurs only in the next order due to the four-boson

Γ1 Γ2

k
(4)ε Bk

(4)

(a) (b) (c) (d)

FIG. 3. The lowest-order vertices that yield 1 /S corrections to
the spectrum and 1 /S2 contributions to the static properties.
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terms that are substantially weaker. In addition, for the com-
monly studied case of the nearest-neighbor square- and
cubic-lattice antiferromagnets, the anomalous quadratic
terms in Eq. �30� also vanish, leaving only a benign energy
renormalization. Altogether, the role of magnon interactions
in collinear spin states is significantly less important than for
noncollinear ones.

The effective Hamiltonian �30� provides a basis for the
systematic perturbative calculations of various properties of
the triangular lattice HAF. Parameters of the Hamiltonian
�30� for the triangular lattice case were derived in previous
sections

�̃k = �k + �k
�4�, Vk

od = −
1

2
Bk

�4�,

Vk,q =
1

2!
�1�q,k − q;k�, Fk,q =

1

3!
�2�q,− k − q,k� ,

�31�

where �k�O�S1�, �k
�4� and Bk

�4��O�S0�, and �1,2�O�S1/2�.
Using the standard diagrammatic technique for bosons at

zero temperature, we define the bare magnon propagator as

G0
−1�k,�� = � − �k + i0. �32�

Then, the lowest-order diagrams contributing in the order
O�S0� to the normal and anomalous self-energies are shown
in Figs. 3�c�, 3�d�, and 4. The corresponding expressions for
the normal self-energies are

�11
�a��k,�� =

1

2�
q

��1�q;k��2

� − �q − �k−q + i0
, �33�

�11
�b��k,�� = −

1

2�
q

��2�q;k��2

� + �q + �k+q − i0
. �34�

From now on we shall use, for brevity, only two momenta in
the notations for the cubic vertices �22�. The anomalous self-
energies are calculated as

�12
�c��k,�� = −

1

2�
q

�2�q;k��1
��q;− k�

� + �q + �k+q − i0
, �35�

�12
�d��k,�� =

1

2�
q

�2�q;− k��1
��q;k�

� − �q − �k−q + i0
. �36�

Finally, the two frequency-independent contributions to the
normal and anomalous self-energies are given directly by the
Hartree-Fock terms

�11
HF�k� = �k

�4� and �12
HF�k� = − Bk

�4� �37�

of Figs. 3�c� and 3�d�, respectively. The structure of the
lowest-order contributions �33�–�37� remains valid, with nec-
essary modifications of vertices, for an arbitrary noncollinear
antiferromagnet.

B. Static properties

Previous works on the spin-wave theory for the triangular
lattice HAF have calculated the second-order 1 /S corrections
to the ground-state energy and to the sublattice magnetiza-
tion. Two approaches have been employed for calculation of
the latter: numerical extrapolation of the response to small
staggered magnetic field10 and a direct diagrammatic
expansion.11 Surprisingly, they have produced two different
results: �S2=0.011 / �2S� versus 0.027 / �2S�, respectively.
While the latter approach has to deal with more singular
higher-dimensional integrals, the former one relies on nu-
merical extrapolation in a small parameter. Below, we re-
solve the controversy over the value of the staggered mag-
netization in favor of the Miyake’s result10 by following the
diagrammatic approach of Chubukov et al.11 and pointing
out a delicate issue with numerical evaluation of canceling
singularities under integrals. For completeness we also
briefly discuss the ground-state energy correction.

1. Ground-state energy

The first two terms in the 1 /S expansion of the ground-
state energy of the triangular lattice HAF are given by Eq.
�11�. Here, we calculate the next-order correction resulting
from the magnon interactions. The contribution from the
quartic terms has already been obtained in the course of de-
riving the spin-wave Hamiltonian and is given by Eq. �26�.
Another correction of the same order is generated by the
source vertex �Fig. 3�b��

�E3 = −
1

3!�k,q

��2�q;k��2

�k + �q + �k+q
. �38�

Combining all these contributions together one finds in the
second order in 1 /S,

Egs/N = −
3

2
JS2
1 +

I2

S
+

�I4 + 2I3�
�2S�2 � , �39�

where I2= �1−�k�k� and the constants I4 and I3 are straight-
forwardly related to �E4,

I4 = �c0 + c1 − 2c2 − 1�2 −
3

2
�c1 − c2�2 
 − 0.254 293,

�40�

and to �E3,

Γ2 Γ1
*

Γ1 Γ1
*

(a)

Γ2Γ1
*

Γ2Γ2
*

(b)

(c) (d)

FIG. 4. The lowest order normal ��a� and �b�� and anomalous
��c� and �d�� magnon self-energies generated by cubic vertices.
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I3 = �
k,q

�̃2�q,k�2

�k + �q + �k+q
= 0.137 85�1� . �41�

The above four-dimensional integral has been calculated by
two different methods: the Monte Carlo integration and the
finite-size extrapolation of lattice sums using clusters with
different aspect ratios,16 both agreeing in all significant dig-
its. Altogether, the ground-state energy in the second order of
1 /S expansion is

Egs/N = −
3

2
JS2
1 +

0.436 824

2S
+

0.021 41

�2S�2 � . �42�

The above result agrees with the previous calculation32 im-
proving on the numerical accuracy of the last term.

2. Sublattice magnetization

To calculate the staggered magnetization we use the dia-
grammatic approach which is very close, aside from a few
technical details, to the one used in Ref. 11. Within the spin-
wave approach the sublattice magnetization is

�S	 = S − �ai
†ai	 = S − �S , �43�

where the quantum correction �S is expressed as

�S = �
k

�vk
2 + �uk

2 + vk
2��bk

†bk	 + 2ukvk�bkb−k	� . �44�

The first term under the sum is the LSWT result8,9 already
given by Eq. �18�

�S1 = �
k

vk
2 
 0.261 303 2. �45�

The two remaining terms in Eq. �44� contain bosonic aver-
ages which vanish in the linear spin-wave �LSW� approxi-
mation and contribute only to the next order in 1 /S. There-
fore, we write

�S	 = S − �S1 −
�S2

2S
, �46�

where the last correction has two contributions:

�S2

2S
= �S2,1 + �S2,2,

�S2,1 = �
k

1 +
1

2
�k

�k
�bk

†bk	, �S2,2 =
3

2�
k

�k

�k
�bkb−k	 .

�47�

Calculation of the bosonic averages in the above expres-
sion must be performed to the first order in 1 /S. As ex-
plained in Appendix B, these averages are straightforwardly
related to the normal and anomalous self-energies �see Figs.
3 and 4�. In particular, the magnon occupation number �bk

†bk	
is only due to �11

�b� from Fig. 4�b�, while the other two normal
self-energy corrections, �11

�a� and �11
HF, have zero contribu-

tions. On the other hand, all three off-diagonal self-energies,

�12
�c�, �12

�d�, and �12
HF, contribute to �bkb−k	. Leaving the details

of the derivation to Appendix B, we present here the final
answer

�S2 = −
9

16
c1c2 +

9

16
�c2 − c1��

k

�k�1 − �k�
�k

3

+
9

4�
k

�k

�k
2 �

q

�̃1�q;k��̃2�q;− k�
�q + �k−q + �k

+
3

2�
k

1 +
1

2
�k

�k
�
q

�̃2�q;k�2

��q + �k+q + �k�2 . �48�

This expression agrees with the formula derived previously
in Ref. 11 apart from the corrected sign in front of the third
term.

As is often the case with the higher-order spin-wave cor-
rections, the individual contributions in Eq. �48� are diver-
gent: the integrands in the second and the third terms behave
as O�1 /k3� at k→Q, which means that not only the leading
divergences in them, but also the subleading ones O�1 /k2�
must cancel in order to produce finite result. Expanding in
small �k= �k−Q�, such a cancellation can be verified
analytically.11 Still, the expression given in Eq. �48� is not
well behaved numerically. If one tries to evaluate �S2 di-
rectly using the Monte Carlo integration, the outcome ap-
pears to be divergent. If some other methods are employed,
the result may seem to be regular. We have used the simple
finite sums in the k space that correspond to periodic clusters
with the subsequent finite-size extrapolation.16 For any given
subset of �rectangular� clusters with the fixed aspect ratio the
result of Eq. �48� converges to a finite value as the size of the
cluster L→�. However, as an indication of the problem,
subsets with different aspect ratio yield different values of
�S2 in the thermodynamic limit.

The origin of the problem is the following. The internal
integrals in Eq. �48� over q are not divergent and, generally,
scale with the lattice size as16,43

�k
�L� = �

q

�L�Fk,q = �k
��� +

�

L
+ ¯ . �49�

In the thermodynamic limit, two such terms cancel near cer-
tain points and regularize the �1 /k3 singularity in the exter-
nal integral over k,

1

k3 ��k
��� − �k

���� =
1

k3 �Ak2 + ¯� . �50�

However, numerically such a cancellation is not complete as
it carries a 1 /L term as in Eq. �49�

1

k3 ��k
�L� − �k

�L�� =
1

k3
Ak2 +
�̃

L
+ ¯� . �51�

Since the 2D integral of 1 /k3 diverges as L, the 1 /L correc-
tion from mutually canceling terms in Eq. �51� will give an
unphysical contribution to the L→� limit of Eq. �48�. This
explains the erratic behavior of the numerical values of �S2
and suggests that the extra care should be taken with Eq.
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�48�. The way to regularize this problem is described in Ap-
pendix B. After the regularization, the final answer for Eq.
�48� can be obtained by any standard integration method,
which yields

�S2 = − 0.011 045�5� . �52�

This result differs from �S2
0.027 quoted by Chubukov
et al.,11 which may have suffered from the above integration
problem. Our value agrees, though, with �S2
0.011 ob-
tained by Miyake10 by a different method that avoids highly
singular integrals but deals with extrapolation in a small aux-
iliary field.

Finally,

�S	 = S − 0.261 303 +
0.011 045�5�

2S
. �53�

Thus, the spin-1/2 Heisenberg antiferromagnet on a triangu-
lar lattice has the following value of the ordered
moments—�S	
0.249 74—within the second-order spin-
wave expansion. Note, that this spin-wave value is somewhat
larger than the results of the Green’s function Monte Carlo,14

the series-expansion,15 and the recent DMRG calculations16

that give �S	
0.205�15�.

IV. SPIN-WAVE SPECTRUM: 1 ÕS CORRECTION

Similarly to the calculation of the static properties, pertur-
bative expansion for the magnon spectrum has to be per-
formed order by order in 1 /S to ensure cancellation of all
possible divergences in the individual contributions. This dif-
ficulty notwithstanding, derivation of the first 1 /S correction
to �k is straightforward. The anomalous terms do not con-
tribute in that order and the new pole of the magnon Green’s
function is determined by

� − �k − �HF�k� − �11
�a��k,�� − �11

�b��k,�� = 0, �54�

to which we refer to as to the Dyson equation. The self-
energies in Eq. �54� are given by the diagrams in Figs. 3�c�,
4�a�, and 4�b�. Solving it self-consistently in the complex
plane for a new renormalized spectrum �= �̄k− i�k consti-
tutes the off-shell approximation discussed in Sec. VI.

The first-order 1 /S correction to the spectrum is obtained
within the so-called on-shell approximation. In this approxi-
mation the self-energies are evaluated at the bare magnon
energy �=�k. This leads to the following expression for the
renormalized spectrum:

�̄k − i�k = �k + �k
�4� −

9

4
J�

q

 �̃1�q;k�2

�q + �k−q − �k − i0

+
�̃2�q;k�2

�q + �k+q + �k
� . �55�

In the right-hand side the harmonic energy is O�S�, while the
rest of the terms are O�S0�. The finite magnon decay rate �k
comes only from the first term in the brackets. Since the
Goldstone modes should be well defined in the ordered AFs,
we expect �k��k in the long-wavelength limit. The details

for that limit are given in Sec. IV A, while Sec. IV B is
devoted to the behavior of the renormalized spectrum in the
full BZ.

A. Low-energy magnons

1. Velocity renormalization

The triangular lattice antiferromagnet has three Goldstone
modes at k=0 and �Q. The existence of these zero-energy
modes follows directly from the broken SO�3� rotational
symmetry in the spin space and, therefore, should not be
affected by quantum renormalizations.39 As a consistency
check of the 1 /S expansion, it is important to verify the
presence of acoustic modes in the renormalized spectrum
�55�. Such a verification was first performed in Ref. 11 where
the 1 /S corrections to the velocities of the Goldstone modes
were derived. We have reproduced these corrections with an
improved numerical accuracy, although, technically, a some-
what different route was followed for the derivation. Nu-
merical values of the spin-wave velocities are

v0 = 3JS
�3

2
�1 −

0.114 88

2S
� ,

vQ = 3JS�3

8
�1 +

0.082 85�2�
2S

� . �56�

2. Long-wavelength decays

In the long-wavelength limit decay rates can be always
calculated perturbatively because of the smallness of interac-
tion among low-energy excitations and due to reduction of
the phase-space volume available for decay processes. In
other terms, presence of the well-defined Goldstone modes
implies smallness of the damping rate with respect to their
energy, �k��k. As with the velocity renormalization, such a
behavior has to be verified using Eq. �55�. As was remarked
before, existence of the cubic interactions alone does not
immediately yield finite lifetime for the excitations since the
corresponding decays may be virtual. The decay processes
become real if both the total energy and the total momentum
can be conserved simultaneously. Since the two-particle ex-
citations form a continuum of states, the energy conservation
can be rephrased as the requirement of an overlap of the
single-particle branch with the two-particle continuum. This
yields certain kinematic conditions on the bare spectrum �k,
which are discussed in Sec. V using the example of the tri-
angular lattice HAF. Here we assume that such conditions
are fulfilled and consider several scenarios for the decays of
the long-wavelength excitations relevant to the present
model.

Generally, the decay rate is given by

�k � �
q

�Vk,q�2���k − �q − �k−q� , �57�

where Vk,q is the decay vertex. Due to the energy conserva-
tion, the upper limit for the momentum of created quasipar-
ticles should be of the order of k. Then, for the linear spec-
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trum �k�k, a naive power counting suggests the following
answer:

�k � kD−1�Vk�2, �58�

where kD comes from the D-dimensional phase space, 1 /k is
due to reduction of that space to decay surface from the
energy conservation, and Vk is the typical amplitude of the
cubic vertex on the decay surface. Let us assume that the
cubic interaction follows the standard form29 Vk,q��kqq�,
q�= �k−q�, and that in a typical decay process the final mo-
menta are q , q��k. This makes �Vk�2�k3 and yields a seem-
ingly universal power law for the decay rate

�k � kD+2. �59�

For D=3 this yields �k�k5 which matches the result for the
decays of the convex phonon branch,44 but, as we shall see
shortly, only coincidentally.

In reality, the situation is more delicate and possible
power-law exponents for the decay rate asymptote depend on
the specifics of the problem. In the case of a single weakly
nonlinear acoustic branch, relevant to the phonon spectrum
in 4He,

�k = ck + �k3, �60�

the decays are allowed only for a positive curvature of the
spectrum, ��0 �convex �k�. In this case, the unstable qua-
siparticle emits two excitations in a narrow solid angle cen-
tered in the direction of the initial momentum. The apex
angle of the decay cone scales as 	�k such that the phase
space is k2D−1 instead of kD. Then the restriction from the
energy conservation gives 1 /k	2�1 /k3 instead of 1 /k in the
previous consideration. Altogether, for the case of the cubic
upward curvature of the spectrum, the answer is universal
�see also Ref. 42�

�k � k2D−1, �61�

which yields �k�k5 in three dimensions �3D� �Refs. 29 and
44� and �k�k3 in 2D. The 2D result applies to the square-
lattice HAF in a strong magnetic field where the convexity of
the soundlike branch changes from ��0 below the threshold
field H� to ��0 in the high-field region H��H�Hs.

36,42,37

If several acoustic modes with different velocities are
present, the fast quasiparticle can always decay into two slow
ones. This situation is simpler than the previous case since
the nonlinearity of the spectra plays no role. The phase-space
factor becomes kD−1 now, in agreement with the above naive
consideration. Physical realizations of this scenario include
decays of the longitudinal phonon into two transverse ones in
solids28 as well as the decay of the k→0 into two k
→ �Q magnons in the triangular lattice HAF. Clearly, such
a channel of decays withstands quantum renormalization of
the velocities and is pertinent to the other noncollinear AFs.

Interaction between phonons in crystals obeys the con-
ventional scaling asymptote Vk,q��kqq� and, consequently,
�Vk�2�k3. Therefore, the naive power counting of Eq. �59� is
valid for them. However, in the case of the triangular lattice
HAF, the result is yet different from Eq. �59� because the
three-magnon vertex �20� is anomalous and scales as
Vk,Q+q� �q�−q��k /qq� for small k. For a typical decay pro-

cess q , q��k giving �Vk,Q+q�2�k instead of k3. Altogether
this yields for the noncollinear HAFs in D dimensions

�k � kD. �62�

Direct analytic expansion of Eq. �55� gives the following
decay rate of the k→0 magnons in the triangular lattice HAF
�D=2�,

�k �
9k2J

4�2


1 + 
�17

32
−

1

2�2
�� , �63�

which is �k
0.789Jk2, in agreement with the numerical data
in Fig. 5.

The kinematic conditions for magnons near �Q �K and
K�� points are more subtle. The magnon energy has a

nonanalytic expansion in small k̃=k−Q with varying con-

vexity: �k
ck̃+�
k̃2, where the nonlinearity depends on the
azimuthal angle �
�cos 3
 �see Eq. �15��. This form, to-
gether with the commensurability of the AF ordering vector
Q with the reciprocal lattice of the crystal, allows for mo-
mentum and energy conservations for magnon decays from
the steeper side of the energy cone at k→Q onto the flatter
sides at q , q�→−Q. Commensurability of Q is important
here as 3Q=0 is the necessary condition for the conservation
of the quasimomentum. Thus, magnons near the Q point are
unstable only in a certain range of angles. The decay vertex
for k→Q magnon has the conventional scaling VQ+k,−Q+q
��kqq�, so the decay probability is �Vk�2�k3. However, due
to a constraint on the angle between k and q, the decay
surface in q space is a cigar-shaped ellipse with length �k
and width �k3/2. That makes the restricted phase volume of
decays to scale as k�3D−5�/2. This results in a nontrivial law

�k � k�3D+1�/2, �64�

which gives k7/2 for the decay rate in 2D. Numerically, along
the K� line �k
1.2Jk7/2 �see Fig. 5�. Away from this direc-
tion the damping exhibits an anomalous angular dependence
�k�1 / �cos 3
�3/2. Such a behavior is related to the saddle-
point singularities which is discussed in Sec. V.

B. High-energy magnons

The renormalized spin-wave energy and the magnon
damping given by Eq. �55� have been calculated using the

1.1 1.2

0.004

0.008

0.012

0.016

1.2 k 7/2

0.1 0.2

k / π

0.01

0.02

0.03

0.04

Γk /J 0.8 k 2

k 0

KΓ

k Q
AF

FIG. 5. �Color online� Spin-wave decay rates in the vicinity of �
and K points in the triangular lattice HAF. Dots are numerical so-
lutions of Eq. �55� and dashed lines are the asymptotic results �see
text�.
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Monte Carlo integration method with 108−109 integration
points in the full BZ. Numerical results for the spin-1/2 case
are shown in Figs. 6 and 7 for representative symmetry di-
rections in the BZ �see Fig. 2 for notations�. Statistical errors
of the calculation are comparable or smaller than the corre-
sponding linewidth. The first prominent feature of the spec-
trum is that the renormalization is stronger at large momenta,
in a qualitative agreement with the series-expansion
results.15,19,20 As we have argued before, this is a conse-
quence of the considerable coupling between single-magnon
excitations and two-magnon continuum determined by cubic
anharmonicities. The momentum dependence of the mini-
mum of the continuum is shown in Fig. 6 by dotted curves.
The intersection points of these curves with the magnon
branch are marked as kb’s. Inside the continuum, magnon
excitations become intrinsically damped acquiring a nonzero
�k �see Fig. 7�. The magnitude of the overlap of the con-
tinuum with the single-particle branch gives a qualitative
idea of the phase space available for decays. The damping
rate is also illustrated in Fig. 6 as the shaded area between
�̄k−�k and �̄k+�k.

Another interesting property of the renormalized spectrum
in Fig. 6 is its shape in the vicinity of the M point �edge
center of the BZ�. Quantum renormalization converts the

saddle point of �k at kM into a local minimum surrounded by
flat parts.15,18,19 Such local extrema must contribute signifi-
cantly to the thermodynamic properties of the triangular lat-
tice HAF.15,18 The minimum in �̄k is more pronounced in the
numerical results15 than in Fig. 6. It was called a rotonlike
minimum and it was suggested that it might be a signature of
spinons.18 This has been questioned later since the same fea-
ture in the spin-wave results can be explained by the en-
hanced density of two-magnon states near the M point.19,20

Although the above discussion is important for bench-
marking the spin-wave theory with the series-expansion re-
sults, the most remarkable property of the renormalized spec-
trum is the substantial jumplike discontinuities in �̄k, marked
as k� points in Fig. 6, with the jump heights reaching 1/4 of
the magnon bandwidth. If considered without the concomi-
tant behavior of �k, such jumps in �̄k are especially enig-
matic. The values of the damping at the top of the magnon
band are also quite substantial, leading to broadening of the
spectral peaks with the widths about �2�k / �̄k��1 /3. The
most striking features of �k are the sharp logarithmic singu-
larities at several points along the selected cuts of the Bril-
louin zone. These are precisely the same k� points where the
jumps occur in the real part of the spectrum. Thus, the two
singularities are intrinsically related. Analytic consideration
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FIG. 6. �Color online� Spin-wave energy for the S=1 /2 triangular lattice HAF along the symmetry directions in the BZ. Dashed and solid
lines are the results obtained in the LSWT approximation ��k� and with the first-order 1 /S correction ��̄k�, respectively. Vertical arrows
indicate singularities and intersection points with the two-magnon continuum. Gray areas show the width of the spectral peaks due to
damping �k from Fig. 7. Dotted lines represent the minimum of the two-magnon continuum obtained from the LSWT spectrum.
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FIG. 7. �Color online� The spin-wave damping of the S=1 /2 triangular lattice HAF calculated in the first order of the 1 /S expansion
along the same lines as in Fig. 6. Arrows indicate singularities and intersection points with the two-magnon continuum.
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of these singularities in the magnon self-energy is presented
in Sec. V B. Here we simply state that their origin is due to
the intersection of the single-magnon branch with the line of
the van Hove saddle-point singularities in the two-magnon
continuum.

The logarithmic singularities in the damping rate signify a
breakdown of the 1 /S expansion in the vicinity of the singu-
lar k� points. It is remarkable that the log singularities are
obtained already in the lowest-order interacting spin-wave
theory. Therefore, if any other property calculated with the
1 /S expansion is to be compared to numerical methods, such
singularities must be understood and their proper treatment
within the theory outlined. Note, that the numerical series-
expansion results exhibit lack of convergence �large error
bars� at certain k points.18 Although, this is not the same as
singular jumps, such numerical features might occur due to
similar reasons. Analytic results for the spectrum near the
singularities and the proper treatment of the latter will be
presented in Secs. V and VI, respectively.

Altogether, the main effects of quantum fluctuations in the
spectrum of the triangular lattice HAF are the substantial
magnon damping in the major part of the BZ, singular be-
havior of the decay rate along certain contours in the k
space, and strong downward renormalization of the magnon
energies compared to the harmonic spin-wave theory. All
these effects underline the importance of cubic anharmonici-
ties in the noncollinear AFs and represent major qualitative
differences from the collinear cases.

V. KINEMATICS OF TWO-PARTICLE DECAYS

The aim of this section is to consider kinematic con-
straints that follow from the energy conservation in the two-
particle decay process

�k = �q + �k−q. �65�

This equation should be treated as an equation in q with the
initial momentum k as a parameter. The solutions of Eq. �65�
form the decay surface in the q space. Examples of the decay
surfaces �contours in 2D� for the triangular lattice HAF are
shown in Fig. 8 for a few representative k points along the
�K line.

As a function of k, the decay surface changes and may
disappear completely. In such a case, particles become stable
with �k�0. The region in the k space with stable excitations
is separated from the decay region by the decay threshold
boundary. Generally, two-particle excitations form a con-
tinuum of states in a certain energy interval

Ek
min � Ek�q� � �q + �k−q � Ek

max. �66�

Thus, the decay threshold boundary is determined by the
intersection of the single-particle branch �k with the bottom
of the continuum Ek

min. For our problem, the decay region is
the hexagram shown in Fig. 9.

Needless to say, the two-particle decays may be prohib-
ited in the entire BZ, a situation that is common for collinear
antiferromagnets in zero field.27 In such a case, spontaneous
n-particle decays with n�2 are also prohibited since all the
energies in the n-particle generalization of Eq. �65� are posi-

tively defined. Thus, the analysis of the two-particle decay
conditions is crucial for determining whether any spontane-
ous decays are possible. In the case when the two-particle
decay region is finite, the n-particle decays can, in principle,
be allowed in a wider region of the k space �see, e.g., the
corresponding study for the phonon branch in 4He�.45 How-
ever, such an expansion of the decay region requires rather
special conditions and is not discussed in this work.

Aside from finding whether spontaneous decays exist or
not, there is another important reason for considering the
decay kinematics. As was emphasized by Pitaevskii29,46 in
the analysis of the two-roton decay threshold in superfluid
4He, the enhanced density of two-particle states near the
minimum of the continuum may produce strong singularities
in the single-particle spectrum at the decay boundary. This
yields various unusual effects,29,30,46 including complete dis-
appearance of the quasiparticle branch inside the continuum.
Apart from the singularities in the spectrum at the decay
boundary, additional singularities may occur within the de-
cay region due to topological transitions of the decay
surface.20 General analysis of these two effects and its appli-
cation to the triangular HAF are discussed here.

Γ K
π/4

K’

Γ

K’

K

k’

Γ ΓK K

K’ K’

πk*

FIG. 8. �Color online� The decay contours in q space for mag-
nons with selected k’s along the �K direction; k=k� and k=k� are
the same as in Fig. 7, left panel. The corresponding q contours
undergo topological transitions at k� and k�.
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FIG. 9. �Color online� The Brillouin zone of a triangular lattice.
Shaded area shows the region where spontaneous two-magnon de-
cays are allowed. Lines correspond to the extrema in the two-
magnon continuum described in text.
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A. Decay threshold boundary

The boundary of the decay region corresponds to the in-
tersection of the single-particle branch �k with the bottom of
the two-particle continuum �66�. To find Ek

min one should
analyze the extrema of the continuum given by

�Ek�q�
�q

= � ��q

�q
�

q
− � ��q

�q
�

k−q
= 0. �67�

Thus, the extremum condition is satisfied if the velocities of
the decay products are equal. This yields D equations with q
and k as independent variables. To find the decay boundary
one needs to solve the decay and the extremum conditions
�65� and �67� together. Solving them yields a set of
�D−1�-dimensional surfaces in the k space. Since the non-
trivial solution may exist not only for the minimum of the
continuum but for the other extrema as well, some parts of
these surfaces define the decay threshold boundary while the
rest of the solutions will correspond to the special surfaces
within the decay region. The latter is considered in Sec. V B.

For the gapless spectrum, one should also verify whether
the emission of the acoustic �Goldstone� excitation at q
→Qi corresponds to Ek

min. This condition is separate from
Eq. �67� as the Goldstone modes are not the extrema but the
end points of the spectrum. In the case when one or more of
these gapless modes define Ek

min, the decay boundary is given
by

�k = �k+Qi
. �68�

Although the above discussion covers two most general
cases, there exists a particular form of the solution of Eqs.
�65� and �67� for which finding the threshold boundary sim-
plifies greatly. The two-particle continuum always possesses
an extremum when both decay products have equal mo-
menta, up to a reciprocal-lattice vector G: q ,k−q
= �k+G� /2. The condition of equal velocities �67� is auto-
matically satisfied in this case. Such an extremum crosses
with the single-particle branch on the surface determined by

�k = 2��k+G�/2. �69�

Among the previously studied cases, the decay boundaries
for the square- and cubic-lattice HAFs in a strong external
field satisfy the above equation.36

For the case of the triangular lattice HAF, let us begin
with the analysis of the decay involving the Goldstone
modes. The acoustic branch emerging from q=0 does not
correspond to the crossing point of �k and Ek

min and should be
disregarded. The condition �68� on the emission of Gold-
stone modes with q= �Q can be rewritten, using the expres-
sion �12� for the harmonic spectrum, as �k=�k�Q. This last
equation is easily solved and the results are shown in Fig. 9
by the dotted lines. One can show that q= �Q points corre-
spond to the absolute minimum of the continuum for all k
within the shaded area in Fig. 9. To demonstrate that, �k�Q is
also plotted in Fig. 6 as dotted line.

We begin the analysis of the extrema in the two-particle
continuum with the decay threshold involving magnons with
equal momenta. The solutions of Eq. �69� for the reciprocal-
lattice vectors G1,2= ��2
 ,2
 /�3� and G3= �0,4
 /�3� are

readily found numerically and are shown in Fig. 9 by solid
lines. No solution exists for G=0. Solid lines in Fig. 9 lie
entirely within the shaded area and correspond to the saddle
points of the continuum, not the minima. The solution for the
general situation of the threshold decay into a pair of non-
identical magnons with equal velocities but different mo-
menta and energies, �k−q��q, is obtained by solving nu-
merically the decay �65� and extremum �67� conditions
simultaneously. The result is plotted in Fig. 9 by the dashed
line. As in the previous case, this contour corresponds to the
line of saddle points of the continuum within the decay re-
gion.

Altogether, the decay region is given by the union of all
areas obtained in the above three cases. As one can see, the
decay threshold boundary in the triangular HAF is deter-
mined entirely by the emission of acoustic ��Q magnon. In
accordance with the long-wavelength consideration of Sec.
IV A, the area around k=0 is precisely where the decay of
the fast magnon �k→0 into two slow ones �q→�Q takes place
and this area is completely enclosed in the decay region.
Similarly, there are only finite segments in the vicinity of the
�Q points where decays are possible. The other thresholds
due to two-magnon extrema do not contribute to the decay
boundary. As is shown in Sec. VII, such a mutual arrange-
ment of different thresholds may or may not be the case for
other closely related systems. Already a simple addition of
the XXZ anisotropy modifies the decay boundary and
switches saddle points into minima for certain momenta.

The damping of magnons close to the boundary of the
decay region can be considered in a manner similar to the
long-wavelength analysis of Sec. IV A 2. Since the velocity
of the decaying magnon near the boundary must be larger
than the velocity of the emitted acoustic �Q mode, the
phase-space factor is �k−kb�D−1 as is given in Eq. �58�. The
probability of the decay has a smallness only with respect to
q��k−kb�. This yields the 2D decay rate near the threshold
due to acoustic mode

�k � �k − kb�2, �70�

in agreement with the results in Fig. 7 in the vicinity of kb
points.

B. Topological transition in the decay surface

A truly remarkable feature of the magnon spectrum in the
triangular lattice HAF is the logarithmic peaks in �k ob-
tained in the first order of 1 /S expansion. After preceding
discussion it is clear that the location of such singularities
corresponds to the crossing of single-magnon branch with
the surface of saddle points of two-magnon continuum. In-
deed, the k� points in Figs. 6 and 7 belong to the threshold
contour for the decays into pairs of equivalent magnons
�solid lines in Fig. 9�. Much weaker anomalies, which are
visible only as small peaks in �k that are denoted by k�’s in
Fig. 7, correspond to the threshold contour for the decays
into nonequivalent magnons �dashed lines in Fig. 9�.

In the vicinity of the crossing points of the single-particle
branch with the saddle-point surface of the continuum, the
magnon decay surface undergoes a topological transition
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�see Fig. 8�. Expanding the energy conservation condition
�65� in small �k=k−k� and �q=q−q�, where k� is the
point on the threshold contour and q� is the saddle point of
Ek��q�, we obtain

�k − �q − �k−q 
 �v1 − v2� · �k −
�qx

2

a2 +
�qy

2

b2 = 0, �71�

where v1 and v2 are the velocities of the initial and final
magnons and a , b are constants. Depending on the sign of
�v1−v2��k the solutions of the above equation are two con-
jugate hyperbolas, which transform into a pair of crossing
lines for �k=0. Thus, k=k� corresponds to the point where
the decay surface splits into two disjoint pieces, as is indeed
observed in Fig. 8.

The discussions in terms of saddle points of the con-
tinuum and topological transitions of the decay surface
complement each other. While the van Hove singularities are
always present in the two-magnon continuum �66� they do
not necessarily cross with the one-magnon branch. On the
other hand, using the topological transition perspective one
can argue that the occurrence of such a crossing does not
depend on a precise form of �k. As was discussed in Sec.
IV A, acoustic magnon with small k decays into two mag-
nons that are close to Q and −Q. Its decay surface consists of
two disjoint parts near K and K� points �see kx=
 /4 in Fig.
8�. Similarly, a magnon with k→Q can emit two magnons in
the vicinity of −Q. The corresponding decay surface is a
single closed contour near the K� point �see kx=
 in Fig. 8�.
Therefore, moving along an arbitrary trajectory in k space
between � and K points the decay surface must undergo at
least one topological transformation, which also implies
crossing of at least one saddle-point threshold contour. The
actual number of such transformations is determined by the
short-wavelength details of the spectrum. For the triangular
lattice HAF there are two of them as is demonstrated in Figs.
8 and 9.

Let us now consider behavior of the magnon self-energy
in the vicinity of singular points. The decay vertex is regular
at k→k� and q→q� and gives an unimportant constant fac-
tor. Using the expansion �71� we obtain for the singular part
of the magnon self-energy

��k,�k� �� d2q

�v1 − v2��k − qx
2/a2 + qy

2/b2 + i0
. �72�

A straightforward integration in Eq. �72� yields

Re ��k,�k� � sgn��k�, �k � ln
�

��k�
, �73�

where �k�−Im ��k ,�k�. The cut-off parameter � is deter-
mined by the characteristic size of the region in the k space
where the expansion �71� holds. The linear size of the small-
est “droplet” of the decay surface at the topological transition
can be taken as an upper bound on � �see Fig. 8�. Such an
estimate explains the difference in the strength of anomalies
in �k for k� and k� points. The topological transition at k�

consists of joining/splitting of the two approximately equal
contours of substantial size, while the k� point corresponds to
the splitting off of a small piece.

To put this discussion in a broader context we note than in
the earlier works29,36,46 the situation was considered when a
singularity occurs at the boundary of the decay region rather
than in the interior. In such a case, the extremum in the
two-particle continuum that is crossed by the single-particle
branch is a minimum, not a saddle-point, and the analog of
Eq. �72� for ��k ,�k� is given by

��k,�k� �� d2q

�v1 − v2��k − qx
2/a2 − qy

2/b2 + i0
. �74�

After integration this yields the following characteristic
anomaly:

Re ��k,�k� � ln
�

��k�
, �k � ���k� , �75�

where ��x� is the Heaviside step function. Thus, the situa-
tion is reversed in comparison to our case: the log anomaly
occurs in the real part and the jump in the imaginary part of
the spectrum. Since the imaginary part of ��k ,�k� is related
to the two-particle density of states, in 2D it is natural to
have a jump in �k upon entering the continuum and a log
singularity upon crossing the saddle-point line inside the
continuum. By the Kramers-Kronig relations such jumps and
logs in Im ��k ,�k� result in logs and jumps in Re ��k ,�k�,
respectively. For the 3D systems, logarithmic peaks disap-
pear and one obtains only square-root singularity
Re ��k ,�k�����k�.

Another important question concerns whether singulari-
ties in the spectrum will survive the higher-order 1 /S treat-
ment. If the singularity persists, vertex corrections may be-
come important �see Appendix C�.29 Our Sec. VI discusses
this problem.

VI. OFF-SHELL DYSON EQUATION
AND SPECTRAL FUNCTION

The unusual logarithmic singularities in the magnon de-
cay rate �k found in the first-order 1 /S corrections signify a
breakdown of the standard spin-wave expansion. They rep-
resent an extra theoretical challenge and have to be renor-
malized in order to obtain the actual dynamical behavior. The
purpose of this section is to describe, at a technical level,
different approaches to this problem. In Sec. VI A we show
that the singularities are regularized, for the most part, by
allowing for the finite lifetime of the magnon in the initial
state within the so-called off-shell approach. However, in the
strong-coupling case, the single-particle excitation may dis-
appear in the vicinity of the singularity, similar to the termi-
nation point in the quasiparticle spectrum of superfluid
4He.46 In Sec. VI B we discuss the magnon spectral function
A�k ,�� and find additional singularities in the � space that
are directly connected to the van Hove singularities in the
two-magnon continuum.

A. Singularities and off-shell solution

1. Modified decay region

The first-order quantum correction to the magnon disper-
sion �Sec. IV� leads to a significant narrowing of the magnon
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bandwidth for the spin-1/2 triangular lattice HAF. Therefore,
one may ask how strongly the spectrum renormalization af-
fects the decay boundary and whether the decay condition
Eq. �65� is still satisfied for the renormalized �̄k. In the long-
wavelength limit, the difference between the velocities of the
acoustic modes v0�vQ �see Eq. �56�� guarantees that the
kinematic conditions for decays at k→0 are always fulfilled.
While this argument is applicable to any system with several
types of the Goldstone mode, the decay boundary is defined
by the short-wavelength features, specific to a particular sys-
tem.

In Fig. 10 we present numerical results, which show that
the size of the decay region does not change appreciably
even for the S=1 /2 triangular lattice HAF. The left and the
middle panels demonstrate the renormalization of the bottom
of the two-magnon continuum for two representative paths in
the BZ. The lowest-energy two-magnon states within the de-
cay region still correspond to the emission of the �Q Gold-

stone mode, Ēk
min= �̄k�Q. While the renormalizations of the

spectrum and the continuum are significant, the intersection
points of the two change only weakly. For the YM path in the
BZ �see Fig. 9� one observes a re-entrant crossing of the
single-magnon branch with the bottom of the continuum,
which leaves some uncertainty in defining the new decay
boundary. This behavior is related to the jumplike singulari-
ties in the single magnon �̄k, which should become more
well behaved once the singularities are regularized. The right
panel of Fig. 10 presents the “new” magnon decay boundary
for the spectrum that includes 1 /S renormalization. The
light-shaded regions show the uncertainty areas where the
re-entrant behavior of the spectrum and the continuum occur.
Overall, the decay region does not change significantly in
comparison to the LSWT boundary in Fig. 9.

2. Higher-order diagrams perspective

One way to regularize the decay diagram is to allow for a
finite lifetime of the decay products by dressing the inner
lines in the “bubbles” in Fig. 4. The effect of such a dressing
depends, however, on whether the saddle-point momenta of

the decay products q� and k�−q� in Fig. 8 fall inside or
outside of the decay region. If q� lies inside the decay region
for at least one of the final magnons, then this magnon will
acquire a finite lifetime in the next order. The logarithmic
singularity in �k will be removed in this case since the en-
ergy conservation law Eq. �65� is now satisfied only on av-
erage. For the triangular lattice HAF such a scenario is real-
ized for a large fraction of the “weak” singularities �k� points
in Figs. 6 and 7�. However, all of the “strong” singularities
�k� points in Figs. 6 and 7� and some of the “weak” ones
belong to another class in which the saddle points for both
magnons created in the decay process are outside of the de-
cay region. Hence, at the saddle points, the logarithmic di-
vergence of the one-loop diagrams will persist even for the
renormalized spectrum and the singularities seems to remain
essential.

Thus, the above approach requires summation of an infi-
nite series of diagrams that contain leading-order diver-
gences, similar to the Pitaevskii’s treatment of the spectrum
termination problem.29,46 Such a treatment is hindered within
the spin-wave theory by the divergence of the individual
terms at k→Q in each order of the 1 /S expansion, the prob-
lem already mentioned in Secs. III and IV. While a qualita-
tive statement on the result of such a regularization can be
made �see Appendix C� any quantitatively reliable calcula-
tion is problematic in the light of this problem.

3. Off-shell Dyson equation

The above seemingly hopeless situation is resolved if we
note that the logarithmic singularity occurs for a magnon
which is inside the decay region. This means that the Dyson
Eq. �54� should be solved “off shell,” i.e., with the same
complex energy �= �̄k− i�k both outside and inside ��k ,��.
Physically, such a procedure allows for a finite lifetime of the
initial magnon while magnons created during the decay pro-
cess remain stable. The off-shell approach avoids complica-
tions related to multiloop diagrams and, as we demonstrate
below, is sufficient to regularize the singularity. Note that the
magnon energy in the off-shell solution contains corrections
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FIG. 10. �Color online� Renormalization of the decay region for the spin-1/2 triangular lattice HAF. Left and middle panels: Dashed and
dotted lines are the LSWT predictions for the magnon dispersion �k �dashed� and for the minimum of the two-magnon continuum �dotted�;
solid and dotted-dashed lines represent same results for the spectrum �̄k with the first-order quantum correction, respectively. Right panel:
Modified decay region; lightly shaded regions highlight the area of uncertainty due to the re-entrant behavior seen in the middle panel.
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beyond the first 1 /S order. Nevertheless, it can be shown that
it is yet free from the k→Q divergences associated with the
higher-order diagrams mentioned above.

After a methodological remark made in Appendix D on
the proper sign of the imaginary part of � in the decaylike
self-energy, the Dyson Eq. �54� is given by

� − �k − ��k,��� = 0, �76�

where �� is the complex conjugate of � and ��k ,�� includes
all one-loop contributions given by Eq. �54�. Rewriting the
above equation explicitly for the real and imaginary parts
one obtains the following system:

�̄k = �k + Re���k, �̄k + i�k�� ,

�k = − Im���k, �̄k + i�k�� � 0. �77�

Let us first demonstrate how a finite �k can regularize the
singularity. Replacing �k in Eq. �71� with complex � and
using parametrization �−�c−v2 ·�k= �̄= ��̄�e−i
, where �c is
the position of the saddle point in the continuum, we obtain
after integration

��k,�� � −
V3

2

JS

�


2
− 
� + i ln��JS

�̄
�� . �78�

Here, V3
2��1

2�k� ,q���J2S and � is the momentum cutoff.
Omitting the nonsingular contributions, Eq. �77� is rewritten
as

�̄k � �k −
V3

2

JS
�


2
− 
� ,

�k �
V3

2

JS
ln� �JS

�̄k − �c − v2 · �k + i�k
� . �79�

The on-shell solution is recovered by substituting �k=�c
+v1 ·�k instead of �= �̄k+ i�k in Eq. �79�. This yields �̄
= �v1−v2� ·�k and also implies that cos 
= �1 �or 
=0,
�
depending on the sign of �k. As a result, one finds the jump
in the real part of the spectrum and the log singularity in the
decay rate in agreement with Eq. �73�.

Any renormalization should shift the “bare” singularity
into a new crossing point of the single-magnon branch with
the surface of the saddle points in the two-magnon con-
tinuum. Assuming that the real part of the energy renormal-
ization is already included in the definition of �c and k� and
that �̄k can be still expanded as �̄k��c+v1 ·�k we obtain

�k �
V3

2

JS
ln� �JS

�v · �k + i�k
� . �80�

As a result, the imaginary part of the solution at the singular
point �k is now regular and can be determined by solving
the transcendental equation

�� = ln���JS�2

V3
2

1

��� , �81�

with �k=V3
2�� /JS. Depending on the relative strength of the

three-magnon coupling �V3 /JS�2 to the size of the dimen-

sionless momentum cutoff � there are two different regimes,

�k �
V3

2

JS
ln
��JS�2

V3
2 �, V3

2/��JS�2 � 1,

�k � �JS, V3
2/��JS�2 � 1. �82�

Thus, at large V3
2 /��JS�2 the decay rate is independent of the

coupling and is defined by the phase volume factor. Recall-
ing that V3

2�J2S in the case of the triangular lattice HAF, we
obtain estimates

�k

JS
�

1

S
ln�S��, S� � 1,

�k

JS
� �, S� � 1, �83�

where the first expression is relevant to the “strong” singu-
larities with large phase-space volume for decays �k� points�
and the second is for the “weak” ones �k� points�.

For k→k�, one finds for the off-shell solution

cos 
 =
Re��� − v2 · �k�

��� − v2 · �k�



�v · �k

�k
→ 0. �84�

Hence, 
→
 /2 and the singular jump in �̄k �see Eq. �79��
also disappears in agreement with the above assumption.

In a hypothetical case of the strong cubic term �V3�JS�
one needs to consider vertex renormalizations discussed in
Appendix C. Briefly, this replaces the log singularity in the
self-energy with Im ��k ,���1 / ln�� /��. Solving the Dyson
equation yield the same answer as in Eq. �82� for the
V3

2 /��JS�2�1 limit, while in the opposite case solution for
the single-particle spectrum near k� does not exist. This is
similar to the complete disappearance of the spectrum at the
termination point of the spectrum in the superfluid 4He.46

Finally, we present in Fig. 11 the numerical solution of the
Dyson Eq. �77� for the spin-1/2 triangular lattice HAF. While
the jumps and the logarithmic peaks disappear, the damping
rate remains substantial throughout BZ. Note, that the overall
shape of the off-shell �̄k is in a better agreement with the
series-expansion data15 than the on-shell results. In particu-
lar, the “roton” minimum is well pronounced and the “flat
regions” are much less significant than in the latter case.
However, there is an overall upward energy scale offset of
our results relative to the numerical ones. This may be due to
both the remaining higher-order 1 /S corrections to the spec-
trum in the spin-wave theory approach and the neglect of the
imaginary part of the spectrum in the series-expansion cal-
culations. The upward energy renormalization of the off-
shell versus on-shell results is natural as the latter tends to
overestimate the energy shifts.

Altogether, the main result of the off-shell consideration
is that this approach naturally resolves the singularity prob-
lem, regularizing the log singularities in the decay rates and
removing the concomitant jumplike discontinuities in the
real part of the spectrum. As the result, the decay rates re-
main significant and are logarithmically enhanced relative to
the perturbative results.
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B. Spectral function

Generally, a detailed information about both the polelike
and the incoherent parts of the single-particle spectrum is
obtained from the diagonal component of the spectral func-
tion

A�k,�� = −
1



Im�G11�k,��� . �85�

In the leading one-loop approximation the diagonal Green’s
function for the triangular lattice HAF is given by

G11
−1�k,�� = � − �k − ��k,�� , �86�

with ��k ,��=�HF�k�+�11
�a��k ,��+�11

�b��k ,�� expressed by
Eq. �54�. In quantum antiferromagnets the spectral function
A�k ,�� is also related to the dynamical structure factor
S�k ,�� which is directly measured in inelastic neutron ex-
periments. Generally, S�k ,�� also has contributions from the
off-diagonal and two-particle correlations,33,40,41 but the
spectral function �85� still provides the major component.

In the absence of intrinsic damping, the quasiparticle peak
in A�k ,�� occurs precisely at �= �̄k found from the solution
of the Dyson equation. In the presence of spontaneous de-
cays the solution of Eq. �77� differs from the position and the
width of a quasiparticle peak in the spectral function because
the latter is defined on the real � axis. Another characteristic
feature of A�k ,�� for all noncollinear AFs is the contribution
from the two-magnon continuum due to a nonorthogonality
of the one- and two-particle excitations. In particular, for the
momenta k inside the decay region, the spectral weight in
A�k ,�� should become nonzero above the bottom of the con-
tinuum. On the same ground, one should also expect singular
behavior due to the van Hove singularities of the continuum

to be prominent in the spectral function at any k, not only at
special contours of k�. This is because frequency scans
through all possible energies and is not limited to the “mass
surface” �=�k. Since we are restricted to the one-loop ap-
proximation for ��k ,�� due to difficulties with the higher-
order diagrams discussed above, such van Hove singularities
will appear as sharp features in A�k ,��. This is due to both
the one-loop approximation for the self-energy and because
� at which the system is probed is purely real. Qualitatively,
all singularities are expected to be regularized by the higher-
order contributions. The complication is, of course, that a
quantitative calculation of such a regularization can be diffi-
cult if not impossible.

Figures 12 and 13 show the spectral function �85� for
three different momenta: the M point �face center of the BZ�
outside of the decay region and the two points on the �K
line, k= �0.6085
 ,0� and k= �0.2
 ,0�, both inside of the de-
cay region. The momentum for Fig. 13�a� is k�, which cor-
responds to the logarithmic peak in the on-shell �k. The up-
per panels in Figs. 12 and 13 show the spectral function
A�k ,��, while the lower panels contain Re G−1�k ,��,
Im G−1�k ,��, and the two-magnon density of states �DoS�

Dk
2mag��� = �

q
��� − �q − �k−q� . �87�

The energies of the noninteracting spin waves �k are indi-
cated by dashed arrows. The quasiparticle peaks in A�k ,��
plots are marked by solid arrows. The lower panel shows that
Re�G11�k ,��−1� vanishes at the same �= �̄k, as is expected
for the pole behavior. For momenta inside the decay region,
these peaks are also significantly broadened �see Figs. 13�a�
and 13�b��. While �̄k differs very little from the one found in
the numerical solution of the Dyson Eq. �77�, the damping in
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LSW + 1/S
DE solution
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Γ k
/J

k
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FIG. 11. �Color online� Comparison of the magnon spectrum �upper row� and the decay rates �lower row� obtained in the harmonic
approximation �dotted lines�, with the first-order 1 /S corrections �dashed lines�, and by solving the Dyson equation �solid lines�, respectively.
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Figs. 13�a� and 13�b� is somewhat smaller than the one found
self-consistently from Eq. �77�. As we discuss in Appendix
E, one can properly define the quasiparticle residue even for
the case of the nonzero damping. The issue of defining it at a
singularity point is also discussed there.

Confirming our previous discussion, the spectral weight in
the decay region, Fig. 13, is nonzero above the two-magnon
continuum � boundary. The lower panels in Figs. 13�a� and
13�b� demonstrate that every singularity in the two-magnon
DoS is reflected in both the real and the imaginary parts of
the self-energy and, as a result, in the spectral function. For
k=k� in Fig. 13�a� the bare magnon energy �k coincides with
one such singularity, which corresponds to the decay into
two magnons with energies ��k+G3�/2. This intersection with
the singularity surface causes the anomaly in the on-shell
spectrum �see Sec. IV�. For a nonsingular momentum in Fig.
13�b�, which is not on the k� contour, similar singularity is
above the magnon energy.

Perhaps the most spectacular and also unexpected features
of all the data in Figs. 13�a� and 13�b� are the sharp peaks at
the bottom of the spectrum that are not associated with a
concomitant peak in the two-magnon DoS. At the first
glance, it may even be concluded that these peaks are the
“true,” well-defined quasiparticle peaks with zero damping.
A close inspection of Re���k ,��� and Im���k ,��� in the
lower panels clearly connects the peaks in A�k ,�� to the
logarithmic and jumplike singularities in the one-loop self-
energy. The origin of them is slightly more delicate than just
a two-magnon DoS feature. The two-magnon DoS at the
bottom of the continuum �b in the decay region corresponds
to the boundary to the emission of the ��Q magnon.
Thus,with �b=�k�Q, ��=�−�b, and q in the vicinity of
�Q, the threshold behavior of it is

Dk
2mag��� �� qdq���� − vQ�q�� � ��������� . �88�

Within the self-energy, the decay vertex exhibits anomalous
behavior at small �q= �Q+q for k away from k=0 and

from the decay boundary �̃1�k ,q��1 /���q�. This yields a
jumplike threshold behavior in the decay rate

Im���k,��� �� dq���� − vQ�q�� � ����� �89�

and the concomitant log singularity in Re���k ,��� �as in
Sec. V B�. Thus, the weak threshold singularity of the type
������� in the two-magnon DoS is enhanced by the sin-
gular decay vertex. This leads to a zero in Re�G11�k ,��−1�
and a “pseudo”-quasiparticle peak in A�k ,��. We refer to
these anomalies in Figs. 13�a� and 13�b� as to the “edge”
singularities. While in Fig. 13�a� this singularity is due to
�−Q magnon, in Fig. 13�b� there are two such singularities:
one associated with �−Q and the other �+Q magnon emission
boundaries.

As is discussed earlier, all such singularities should be
regularized by the higher-order treatment. For the “edge”
singularities, the regularization requires summation of the
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Pitaevskii’s sequence �see Appendix C� since the external
energy is purely real in A�k ,��.

To summarize, the conventional consideration of the
single-particle spectral function in the triangular lattice HAF
is complicated by the logarithmic singularities associated
with the van Hove singularities in the two-magnon con-
tinuum and with the singular behavior of the three-magnon
coupling. Despite the contamination with these spurious fea-
tures, a sensible analysis of the spectrum in terms of the
broadened quasiparticle peak on the background of the two-
magnon continuum is still possible.

VII. OTHER MODELS

In this section we demonstrate that anomalous features
found in the spectrum of the triangular lattice Heisenberg
antiferromagnet are generic and appear in a wide variety of
noncollinear antiferromagnets. One straightforward generali-
zation from the considered case is to the easy-plane XXZ
model. Another modification consists of reducing lattice
symmetry while keeping isotropic interaction between spins.
This gives the so-called J−J� model on an orthorhombically
distorted triangular lattice: the Heisenberg exchange along
horizontal chains J is stronger than the interchain coupling
J�. Another system discussed here is the kagomé-lattice an-
tiferromagnet with the XXZ anisotropy. In the following we
outline basic kinematic conditions for two-magnon decays in
these models and emphasize the singularities in the magnon
spectrum.

A. XXZ model

The XXZ antiferromagnet on a triangular lattice is defined
by the following Hamiltonian:

Ĥ = J�
�ij	

�Si
xSj

x + Si
ySj

y + �Si
zSj

z� . �90�

For the easy-plane system with the anisotropy parameter �
=Jz /J�1 spins form the same 120° structure as in the
Heisenberg case. In the harmonic approximation the spin-
wave energy is given by a simple modification of the Heisen-
berg formula �13�

�k = 3JS��1 − �k��1 + 2��k� . �91�

In addition, the three-boson interaction terms retain the same
functional form as in Eqs. �19�–�22�. Therefore, for the 1 /S
consideration of the XXZ model the changes concern only
Bogolyubov parameters and quartic terms. While a detailed
consideration of this model is beyond the scope of the
present work, we would like to highlight two ubiquitous fea-
tures of its spin-wave spectrum determined by the three-
boson interactions: strong renormalizations and decays.

Let us first focus on the strongly anisotropic case and put
�=0. The ground-state energy for such an XY antiferromag-
net is

Egs/N = −
3

2
JS2
1 +

0.064 515

2S
+

0.013 326

�2S�2 � , �92�

in agreement with Ref. 32. The harmonic spin-wave spec-
trum for this case is shown in Fig. 14 by dashed lines. Be-
cause of the reduced spin-rotational symmetry there is only
one acoustic branch near the � point. The zero-point fluctua-
tions reduce the sublattice magnetization to �S	=S
−0.051 467 in the linear spin-wave approximation. Even for
the spin-1/2 case this amounts only to a 10% renormaliza-
tion. Yet, the 1 /S corrections to the spectrum shown by solid
lines in Fig. 14 are even larger than in the isotropic case.
Magnon bandwidth narrowing in �=0 case is almost 50% of
its bare value. One can also observe that the much-discussed
rotonlike minimum at the M point is much more pronounced
here than in the spin-wave results for the Heisenberg limit.
The origin of this minimum can be traced to the one-
dimensional �1D�-like van Hove singularity in the two-
magnon density of states at the M point, similarly to the
isotropic case �Sec. IV B�. In addition, one can notice that
the top of the renormalized magnon band exhibits much
more extended flat regions than in the Heisenberg limit as
well as some weaker minima �between � and K� and other
extrema. These features must affect the thermodynamics of
this model substantially. Thus, interpolating between �=0
and �=1 cases, one can conclude that the anharmonic three-
boson terms lead to very strong spectrum renormalization
throughout the BZ for the XXZ model on the triangular lat-
tice for all values of �.
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FIG. 14. �Color online� Magnon energy for the XY spin-1/2 triangular lattice AF along representative directions. Dashed line is the linear
spin-wave dispersion and solid line is including the first 1 /S correction.
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On the other hand, magnons in the �=0 XXZ model are
stable at T=0 and decays are absent. To study the evolution
of the two-magnon decays we begin with the nearly Heisen-
berg limit 1−��1. Magnons with q= �Q are gapped with
�Q=�3�1−�� /2. This has two immediate consequences in
comparison to the �=1 limit: �a� magnons at k→0 cannot
decay into two �Q magnons up to k values such that �k
=2�Q and �b� Q magnons become stable themselves for the
same reason. As a result, the star-shaped decay region of Fig.
9 develops a hole in the middle and has vertices shrunk and
rounded �see Fig. 15�. The evolution of the character of the
decay boundary with � is nontrivial. Initially, the emission of
a Q magnon remains an absolute minimum of the two-
magnon continuum for most of the decay region except the
tips of the star vertices. At �1
0.993 the decay into a pair of
nonequivalent magnons switches from being a line of saddle
points into the absolute minima of the continuum and takes
over the decay boundary �compare dotted and dashed lines in
Figs. 9 and 15�. Without going into details, we simply note
that in such a case the real part of the spectrum is singular,
Re ��kb ,��� ln�k−kb� �see Eq. �75�� which is similar to the
case of excitations in 4He near the threshold of decay into a
pair of rotons.29,46 Similarly to the latter case, finding the
spectrum near the boundary will require summation of the
higher-order diagrams. Figure 15 shows the evolution of the
decay region and singularity lines between �=0.99 and �
=0.96. Further decrease of � completely eliminates the de-
cay region at around �
0.92. Therefore, magnon decays are
present in an anisotropic triangular lattice AFs, but only for
not very strong anisotropies.

B. J−J� model

Another variety of generalizations of the nearest-neighbor
Heisenberg model can be generated by spatial anisotropies,
keeping spin-space intact. A particular model of this type
corresponds to an orthorhombically distorted triangular lat-
tice

Ĥ = J�
�ij	

x

Si · S j + J��
�ij	

z-z

Si · S j , �93�

in which interactions along the “1D chains” running parallel
to the x axis is J, while zig-zag interaction between the
chains is J�. This model has attracted a lot of attention due to
experimentally available systems, Cs2CuCl4 �Ref. 2� and

Cs2CuBr4,47 with J� /J is 
0.34 and 
0.7, respectively. For
the former system, a comprehensive experimental neutron-
scattering analysis of the spin-excitation spectrum has been
performed2 and an extensive theoretical analysis using both
the spin-wave theory and the 1D spinon-based approach
have been carried out.41,40,48,49 We do not intend to repeat
any of these calculations here, but would like to emphasize
that a substantial broadening of the spin waves in a major
part of the BZ must persist throughout the phase diagram of
the J−J� model.

The ground state of the classical J−J� model is an incom-
mensurate spin spiral. In the harmonic approximation, the
energy of the spin waves in the J−J� model with J� /J�2
is41

�k = 6SJ���k − �Q����Q+k + �Q−k�/2 − �Q� , �94�

where

�k =
1

3
�cos kx + 2

J�

J
cos

kx

2
cos

�3ky

2
� �95�

and the ordering vector Q= �Qx ,0� is given by

Qx = 
 + 2 arcsin�J�/2J� . �96�

Since the SO�3� symmetry is preserved in the J−J� model,
the Goldstone modes remain at k=0 and k= �Q points with
the incommensurate ordering wave vector Q �Eq. �96��.
Thus, because the velocities of these modes must generally
stay different, magnon decays will always be allowed. In Fig.
16 we show the 3D shape of the linear spin-wave energy for
J� /J=0.34. All notations and symmetry points are the same
as in Fig. 2, kx is in units of 1 /a, and ky is in units of 1 /b,
where a and b are the lattice constants in the chain and
interchain directions, respectively. One can observe a more
sophisticated shape of the dispersion with three saddle points
at different energies �M, M�, and between M� and K� points�.
Comparing this figure with the J=J� case of Fig. 2 one also
finds that with the decrease of J� the spin-wave spectrum
develops a low-energy branch in the y direction �between the
chains with strong J�. That should make the rest of the spec-
trum prone to decays into it.

To analyze the decays on a more qualitative level we
show the decay regions and the singularity lines for two rep-
resentative values of J� /J in Fig. 16. First, the boundary of
the decay region is determined by the emission of the gapless
�Q magnon for any value of J� /J as in the J�=J case.
Second, the incommensurability of the ordering wave vector
Q does not change the kinematics of the decays near k→0
where the spin-waves can always decay into two modes near
+Q and −Q. However, the incommensurability forbids the
decays from near the Q point into the vicinity of −Q point
since the 2Q wave vector is not equal to any reciprocal-
lattice vector anymore and quasimomentum cannot be con-
served in such a decay. This leads to shrinking of the vertices
of the star-shaped decay region in the kx direction �see Fig.
16�. However, the vertices expand considerably in the ky di-
rection. The singularity lines due to the saddle points in the
two-magnon continuum also expand and stretch in the ky
direction as J� is lowered, in agreement with the expectations

α = 0.99 α = 0.96

(b)(a)

FIG. 15. �Color online� Decay region and singularity lines for
the XXZ triangular lattice antiferromagnet with �=0.99 �a� and
�=0.96 �b�. Definition of lines is the same as in Fig. 9.
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from the shape of the dispersion. Overall, the decay region
grows with the decrease of J�. At J�
0.34J, relevant to
Cs2CuCl4,2 the decay region covers most of the BZ �see Fig.
16�.

Within the spin-wave theory, a significant phase-space
volume for the decays found at J� /J=0.34 can be somewhat
compensated by smaller noncollinearity of the spins which
reduces the decay amplitudes. In real Cs2CuCl4, additional
Dzyaloshinskii-Moriya interactions make this angle large
�close to 90°� between the spins in the nearest-neighbor 1D
chains,2 but almost antiparallel within the individual chains
with strong J. This means that, effectively, the decay vertices
are proportional to the weaker coupling J�. However, the
decays of the spin-waves still result in a substantial damping
�see Refs. 41 and 40�. Altogether, the J−J� model should
exhibit magnon decays and singularities in their spin-wave
spectrum throughout all the ranges of J� where the spin-wave
theory is applicable.

C. XXZ model on the kagomé lattice

The Heisenberg antiferromagnet on the kagomé lattice is
magnetically disordered at T=0 in both the classical �S=��
and the S=1 /2 limits.50–52 The degeneracy of the classical
ground state reveals itself in the presence of the dispersion-
less zero-energy branch of magnons in the harmonic spec-
trum. The easy-plane anisotropy does not lift such a degen-
eracy, while opening up a constant gap for the zero-energy
mode. A somewhat different behavior is realized in the re-
cently discovered kagomé-lattice compound potassium
jarosite.53 In this antiferromagnet, the Dzyaloshinskii-Moriya
interactions lift the zero-energy mode to finite energies re-
moving simultaneously the classical degeneracy in favor of a
so-called q=0 spin configuration. Still, the easy-plane XXZ
model,

Ĥ = J�
�ij	

�Si
xSj

x + Si
ySj

y + �Si
zSj

z� , �97�

is more advantageous for a qualitative consideration of the
magnon spectrum because analytic expressions for the spin-
wave energies can be easily derived.

Since the unit cell of the kagomé lattice consists of three
atoms, there are three branches of magnetic excitations. For
the 120° structure, the energies of these branches in the har-
monic approximation are given by

�k
�i� = 2JS�k

�i�, �98�

where

�k
�1� =�3

2
�1 − � = �0,

�k
�2,3� =�1 − ��k −

�1 − ��
4

�1 � �1 + 8�k� , �99�

with

�k = cos k1 cos k2 cos k3, �100�

and k1=kx, k2,3= �kx /2+ky
�3 /2, respectively. Thus, there is

a gapped dispersionless mode, �0, gapped dispersive one,
�k

�2�, and gapless one, �k
�3� �see Fig. 17 where �k

�i� are shown
for �=0.95�. In the real system, the lowest branch is weakly
dispersive.53 Using symmetry consideration, the BZ for the
kagomé-lattice HAF can be reduced to the one smaller than
the triangular lattice BZ �see Ref. 51�. In Fig. 17, �XY cuts
are according to the notations of this work, with X
= �0,2
 /3� and Y = �
 /2,
 /2�3�.

Since the three modes in �99� are some linear combina-
tions of local spin-flips, the three-boson interaction due to
noncollinearity of the spin structure will necessarily facilitate
couplings of all three branches with each other. Such a cou-
pling should not have any apparent smallness aside from the
1 /�S factor, same as in Eq. �20�. Therefore, some qualitative
conclusions about magnon decays in this system can be
made without the detailed technical analysis.

A distinct feature of the spin waves in the kagomé AFs is
a �almost� dispersionless mode. For the decays this means
that in the decays involving one of such magnons the mo-
mentum conservation can be ignored. This immediately im-
plies that any spin wave with the energy exceeding �0 will

J’ = 0.34 J

Q-Q

J’ = 0.7 J

Q-Q

(b)

(a)

(c)

FIG. 16. �Color online� Left panel: the 3D shape of the linear spin-wave frequency �k=�k /2JS for the J−J� antiferromagnet with
J� /J=0.34. Central panel: the decay region and the singularity lines at J� /J=0.34 �definitions are the same as in Fig. 9�. Right panel: same
for J� /J=0.7.
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have a finite lifetime due to decays into one �0 magnon and
a Goldstone mode of the gapless branch. Thus, all the exci-
tations above the horizontal dashed line in Fig. 17 will be
damped due to such decays. Another observation is that there
must exist a particularly strong singularity in both dispersive
branches �k

�2� and �k
�3� at the energy twice the energy of the

dispersionless mode. This is because the self-energy near
2�0 will have a resonantlike form �k���� �V�2 / ��−2�0�.
Even for the case when the lower branch has some residual
dispersion, the damping of �k

�2,3� must be anomalously large
near 2�0 in comparison to the rest of the spectrum. This
should be valid even for large values of spin and in both 2D
and 3D systems. Such a singularity is much stronger than the
logarithmic singularities discussed in the rest of this paper
and should be readily observed in experiment.

D. Summary of Sec. VII

Summarizing the above examples, we conclude that
strong renormalization, significant damping, and singularities
must be common features of the excitation spectra of a wide
variety of noncollinear AFs. The enhancement of damping
along certain contours due to singularities should be consid-
ered as fingerprints of magnon decays. This should help to
distinguish the decay-induced spin-wave broadening from
the other scenarios that yield broad spectra of the spin exci-
tations.

VIII. CONCLUSIONS

To summarize, the triangular lattice AF is a prominent
example of a geometrically frustrated magnetic system.
Present study has demonstrated that the frustration-induced
noncollinearity of the spin structure in such systems is both
the source and the key to understanding of their anomalous
spin-wave spectra. The highlights of the anomalous features
of the spectrum that should be observable in experiments are
the substantial broadening of magnon peaks due to sponta-

neous decays in a large part of the Brillouin zone and strong
deviations of the spectrum from the LSWT expectations for
S=1 /2 systems. The broadening should also be enhanced by
the ln S factor in the vicinity of certain contours in the mo-
mentum space due to the van Hove singularities in the two-
magnon continuum. Such an enhancement might be more
visible in the systems with larger spins, such as the spin-5/2
triangular lattice RbFe�MoO4�2,3 although the overall damp-
ing will be smaller due to the 1 /S effect. As the measure-
ments of the lifetimes of spin excitations in the neutron-
scattering experiments are expected to improve drastically in
the future,57 this will allow for the detailed analysis of the
damping. Therefore, the enhancement of the damping along
specific contours will be able to serve as a fingerprint of the
spin-wave decays and could help to distinguish the spin-
wave decay mechanism from the other scenarios such as
fractionalization of spin excitations into spinons.49,58 We
have also demonstrated that the strong renormalization, de-
cays, and singularities in the spectrum are prominent in a
wide variety of frustrated AFs of current interest.

The strong cubic anharmonic coupling of the spin-waves
induced by the noncollinearity is also the source of various
technical challenges within the spin-wave approach. Such
challenges are largely unfamiliar in the well-studied bipartite
�collinear� AFs where interactions are weaker and are of
higher order. In this work, we have demonstrated that the
spin-wave theory encounters some new problems in treating
magnon interactions in the noncollinear AFs. Generally
speaking, the standard 1 /S expansion for the spectrum be-
comes nonanalytic, which is manifested by the singularities
in the first-order 1 /S self-energy. The origin of such singu-
larities is related to the crossing of the single-particle branch
with the surface of van Hove singularities in the two-magnon
continuum. Regularization of such singularities also requires
extra technical effort of going beyond the lowest-order 1 /S
approximation.
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APPENDIX A: HARTREE-FOCK CORRECTIONS

In the harmonic approximation the following Hartree-
Fock averages are nonzero for the triangular lattice HAF:

n = �ai
†ai	 = �

k
vk

2 =
1

2�
k

1 +
1

2
�k

�k
−

1

2
,

m = �ai
†aj	 = �

k
�kvk

2 =
1

2�
k

�k +
1

2
�k

2

�k
,

0

0.5

1

1.5

ε k
/2

JS

k
X YΓ

α = 0.95

Γ

Γ X

Y

FIG. 17. �Color online� Linear spin-wave frequencies of the
excitations in the XXZ model on the kagomé lattice, Eq. �99� for
�=0.95, along �XY cuts. Notations for the BZ are the same as in
Ref. 51. Lines and shaded area are the decay boundary �dotted�,
strong singularity line �solid�, and the decay region, respectively
�see text�.
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� = �aiaj	 = �
k

�kukvk =
3

4�
k

�k
2

�k
,

� = �ai
2	 = �

k
ukvk =

3

4�
k

�k

�k
. �A1�

These four constants can be expressed through combinations
of three two-dimensional integrals

cl = �
k

��k�l

�k
, c0 = 1.574 733 4,

c1 = − 0.104 253 9, c2 = 0.344 445 8. �A2�

As is discussed in Sec. III A 3, the quartic terms �24�
yield a correction to the ground-state energy that is given by
the four-boson averages. In the leading order, they can be
decoupled into the bilinear combinations �A1� using the
Wick’s theorem. The corresponding terms in Eq. �24� are
given by

�ai
†aiaj

†aj	 = n2 + m2 + �2,

�ai
†aiaiaj	 = 2n� + m�, �aj

†aj
†ajai	 = 2nm + �� . �A3�

This yields the ground-state energy correction from the quar-
tic terms

�E4 = −
3

2
J
n2 + m2 + �2 − 3n� −

3

2
m� + nm +

1

2
��� .

�A4�

After some further algebra the above expression is converted
into a combination of cl constants given by Eq. �26�.

A similar mean-field decoupling procedure yields the fol-
lowing correction to the harmonic part of the Hamiltonian in
terms of the original bosons:

�H̃2 = �
k

�Akak
†ak −

1

2
�Bk�aka−k + a−k

† ak
†� ,

�Ak = −
3

4
J
2�c0 + c1 − 2c2 − 1� + �k�c0 + c2 − 1 +

1

4
c1�� ,

�Bk =
9

4
J
�k�1 + c2 − c0 −

1

4
c1� −

1

2
c1� . �A5�

After that one uses the Bogolyubov transformation �9� and
obtains the following quadratic form of magnon operators:

�H̃2 = �
k

�k
�4�bk

†bk −
1

2
Bk

�4��bkb−k + b−k
† bk

†� . �A6�

The coefficients in this expression are related to �Ak and
�Bk by

�k
�4� = �uk

2 + vk
2��Ak − 2ukvk�Bk,

Bk
�4� = �uk

2 + vk
2��Bk − 2ukvk�Ak, �A7�

which lead finally to Eqs. �28� and �29�.

APPENDIX B: SUBLATTICE MAGNETIZATION

Calculation of the second-order correction to the sublat-
tice magnetization �46� requires evaluation of the lowest-
order contributions to �bk

†bk	 and �bkb−k	, which are ex-
pressed in terms of the normal and the anomalous Green’s
functions, respectively,

�bk
†bk	 = i� d�

2

G11�k,��ei��,

�bkb−k	 = i� d�

2

G12�k,�� . �B1�

One needs to keep only the first-order terms in the perturba-
tive expansion of the Green’s functions. The diagonal aver-
age �bk

†bk	 has a single nonzero contribution determined by
�G11�k ,��=G0

2�k ,���11
�b��k ,��,

�bk
†bk	 =

1

2�
q

��2�q;k��2

��k + �q + �k+q�2 , �B2�

which yields

�S2,1 =
3

4S
�
k,q

1 +
1

2
�k

�k

�̃2�q;k�2

��k + �q + �k+q�2 , �B3�

where we have transformed to the dimensionless vertex and
frequencies in the last expression.

The off-diagonal average �bkb−k	 is determined by the
lowest-order anomalous self-energies

�G12�k,�� = G0�k,��G0�− k,− ���12�k,�� , �B4�

with �12�k ,��=�HF�k�+�12
�c��k ,��+�12

�d��k ,��. The first
frequency-independent contribution from the Hartree-Fock
self-energy �37� yields

�S2,2� = −
9

16S
�
k

�k�1 − �k�
�k

3 �1

2
c1 + c2�k�

= −
9

32S
c1c2 +

9

32S
�c2 − c1��

k

�k�1 − �k�
�k

3 . �B5�

Two other terms give identical contributions to �bkb−k	 with
the net result

�S2,2� =
9

8S
�
k

�k

�k
2 �

q

�̃1�q;k��̃2�q;k�
�k + �q + �k−q

. �B6�

Combining all of the above terms together, we obtain

�S2 = −
9

16
c1c2 +

9

16
�c2 − c1��

k

�k�1 − �k�
�k

3

+
9

4�
k

�k

�k
2 �

q

�̃1�k,q��̃2�− k,q�
�q + �k−q + �k

+
3

2�
k

1 + 1
2�k

�k
�
q

�̃2�k,q�2

��q + �k+q + �k�2 . �B7�
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As discussed in Sec. III B 2, one cannot use Eq. �B7� for
numerical evaluation of �S2 directly as it leads to ambiguous
results or simply does not converge. The way to regularize
the above expression is to use an analytical insight.11 The
integrand in the third term in �B7� can be reduced precisely
to the divergent second term for k→Q,

9

4

�k

�k
2 �

q
� �̃1�k,q��̃2�− k,q�

�q + �k−q + �k
�

k→Q

= −
9

16
�c2 − c1�

�k�1 − �k�
�k

3 + O��k
−2� . �B8�

Then, the proper subtraction of the leading singularities is
ensured by re-expressing the second term in Eq. �B7� as a
double integral over k and q using Eq. �B8�. An additional
technical detail is that one should use projector-type multi-
pliers P1= 2

3 �1−�k� and P2= 1
3 �1+2�k� to avoid introducing

extra singularities by the above conversion in the second
term. These projectors obey P1+ P2=1 and guarantee conver-
gence of the integrals close to the k=0 and k=Q points,
respectively. Altogether, this has led us to the analytically
identical, but numerically regular form of the 1 /S2 correction
to the on-site magnetization

�S2 = −
9

16
c1c2 + �Ŝ3,1 + �Ŝ3,2 + �Ŝ3,3, �B9�

where the second and third terms are regular from the start
due to projectors and the last term is the regularized combi-
nation of all singular terms. Specifically

�Ŝ3,1 = �
k

�1 +
1

2
�k�

�k
�1

2
+ �k��

q

�̃2�k,q�2

��q + �k+q + �k�2 ,

�Ŝ3,2 =
3

4�
k

�k

�k
2 �1 + 2�k��

q

�̃1�k,k − q��̃2�− k,q�
�q + �k−q + �k

.

The combination of the divergent terms is given by

�Ŝ3,3 =
3

2�
k

�1 − �k�
�k

2 �
q
��k� �̃1�k,k − q��̃2�− k,q�

�q + �k−q + �k

−
�̃1�Q,Q − q��̃2�− Q,q�

�q + �Q−q
�

+
2

3

�k�1 +
1

2
�k��̃2�k,q�2

��q + �k+q + �k�2 � .

The results of the numerical integration of the individual
terms are

−
9

16
c1c2 = 0.201 992 72, �Ŝ3,1 = 0.017 918�1� ,

�Ŝ3,2 = 0.025 496�2�, �Ŝ3,3 = − 0.074 660�5� .

Altogether, they lead to the following value of the second-
order correction:

�S2 = − 0.011 045�5� . �B10�

APPENDIX C: HIGHER-ORDER SINGULARITIES

Singularities in the perturbative calculations of the
bosonic excitation spectra are known since the early works
by Pitaevskii29,46 on the termination point in the phonon
branch of 4He. There is a renewed interest in the similar
problems in the context of various spin systems.30 On the
other hand, the logarithmic singularities in the fermionic
spectra are also known to occur since the early works on the
edge-singularities in metals,54 in the context of numerous
aspects of 1D Luttinger liquids,55 as well as in the newer
physical systems such as graphene.56

In all these problems, some physical processes, often of a
threshold nature, lead to a nonanalytic behavior of various
quantities. Such a nonanalyticity manifests itself in a break-
down of the perturbative expansion, i.e., as a singularity. The
theoretical challenge is to reconstruct the original nonana-
lytic behavior from the singular terms in the perturbative
expansion. In the Pitaevskii’s case, such a reconstruction is
rather straightforward and consists of resummation of the
leading divergent terms of the “ladder” �random-phase ap-
proximation, RPA� type. In such a case, the original nonana-
lyticity is straightforwardly related to the singularity, e.g.,
1 / ln��� to ln���, respectively. In the fermionic systems, such
a resummation is more complicated and involves the infa-
mous “parquet” diagrams. However, often enough, the re-
construction of the original nonanalytic behavior is still pos-
sible from the analysis of a few most-divergent terms of the
expansion. In some well-known cases, the log singularity
resumes in a nonanalyticity of a nontrivial fractional power-
law type, ����.54

Since in our case we deal with bosonic excitations, one
can expect that the Pitaevskii’s consideration is the most rel-
evant one. While this expectation, with some minor correc-
tions, turns out to be true, we would like to outline some
differences and similarities of the singularities in the spectra
of noncollinear AFs in a somewhat broader context.

One obvious difference of our problem from the fermi-
onic case is the presence of two coupling constants, three-
particle, V3, and four-particle, V4, depicted in Fig. 3. Because
of that, the diagrammatic expansion is more complicated in
our case. Since the singularity occurs for any value of the
spin, it is natural to group the diagrams by their order in 1 /S.
By construction, the three-particle vertex is of order 1 /�S
relative to the magnon energy �k and it must occur in pairs in
any self-energy diagram, while the four-particle vertex is of
order 1 /S. We depict schematically all topologically different
diagrams of orders 1 /S and 1 /S2 that occur in such a theory
in Figs. 18�a�–18�d�, respectively.

The singularity in our case is due to the “bubble” diagram
�left in Fig. 18�a��, which leads to the logarithmic term for
certain k values of external lines of the diagram. A simple
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analysis shows that out of the 1 /S2 terms only diagrams in
Fig. 18�d� yield the higher power of the log, �ln�����2. In
fact, the first two diagrams in the �d� group are identical and
can be seen as vertex corrections to the bubble in Fig. 18�a�.
The last diagram in the group �d� is the standard “two-
bubble” member of the ladder sequence considered by Pitae-
vskii. A closer inspection of the second diagram in the �d�
group in Fig. 18 makes it clear that it is also the “two-
bubble” diagram with the virtual magnon line and two three-
magnon vertices joining the bubbles. This modifies consid-
eration by Pitaevskii, albeit only quantitatively, as it
introduces extra interaction together with some retardation
into the “ladder” sequence. To rule out the presence of any
“nonladder”-type diagrams with the higher powers of the log
and, hence, to eliminate the possibility of more complicated
form of the nonanalytic behavior, the following observation
is useful. In the parquet consideration,54 it is both particle-
particle and particle-hole diagrams that are singular. In our
case of bosons with nonconserved number of particles at T
=0, the particle-hole diagrams are all identically zero. Thus,
the leading power of the log of any given diagram is simply
the number of nonequivalent regions of the diagram in which
a vertical cut intersects only two magnon lines. Therefore,
the most-divergent diagram sequence is comprised of the
ladderlike diagrams only, with both V4 and �V3�2 between the
bubbles. This can be confirmed by an explicit analysis of the
“dangerous” diagrams in the next 1 /S3 order �not shown in
Fig. 18�.

Another qualitative difference of our problem from the
fermionic case in which the “parquet” summation is success-
ful is that the latter consideration often exploits the long-
wavelength character of the problem to obtain a universal
answer. In our case, the singularity occurs at short wave-
length. Therefore, even in the hypothetical generalization of
our problem to the bosons with conserved number of par-
ticles and singular particle-hole bubbles, the parquetlike
analysis is unlikely to be successful as the coefficients of the
leading log powers will be independent from each other.

Altogether, presented analysis of higher-order divergences
in the diagrammatic sequence for the magnon propagator in

the noncollinear AFs shows that the singularities are regular-
ized by summation of the ladder diagrams of the Pitaevskii
type with the minor modification of the interaction vertex.
The regularized result can be written schematically as

� �
V3

2�

1 − Ṽ�
� A +

B

�
+ ¯ , �C1�

where Ṽ=V4+V3GV3 and � is the singular bubble contribu-
tion ��ln�����.

APPENDIX D: OFF-SHELL DYSON EQUATION
FOR COMPLEX ENERGIES

Suppose that the Dyson equation

� − �k − ��k,�� = 0 �D1�

has a solution at a complex energy

� = �̃k − i�k, �k � 0, �D2�

where the sign of the imaginary part is dictated by causality.
The Dyson equation can be written for the real and imagi-
nary parts as

�̃k = �k + Re���k,�̃k − i�k�� , �D3�

�k = − Im���k,�̃k − i�k�� � 0. �D4�

In the standard textbook approach54 the damping is assumed
to be small, �k��̃k, and is neglected from the self-energy in
the right-hand side of Eqs. �D3� and �D4�. In that case, only
the real part of the Dyson equation needs to be solved self-
consistently while the damping is simply evaluated from the
imaginary part of the self-energy at the real �= �̃k, which is
the solution of Eq. �D3�.

Since we have encountered a problem in which the imagi-
nary part of the self-energy diverges at some k values for �
along the real axis, we would like to deviate from the stan-
dard approach and keep finite �k in both parts of the Dyson
equation, solving them self-consistently for both �̃k and �k.
However, on this path one discovers a difficulty that is un-
related to the singularity and is much more generic. We be-
lieve that it deserves a separate discussion.

Let us consider the self-energy of very general form

��k,�� = �
q

�Vk,q�2

� − �q − �k−q + i0
. �D5�

The self-energy of such type appears in the problem of pho-
non interaction with electron-hole continuum, Cherenkov ra-
diation, or pair production in QED to name a few. All of
these problems involve a �virtual� decay of a particle into
two other particles. For simplicity, the products of the decay
are assumed to be free particles �no damping for �q’s�. The
difficulty arises when substituting �= �̃k− i�k in the denomi-
nator of Eq. �D5�. This shifts the pole in Eq. �D1� into the
wrong �upper� � half plane making �k�0, which violates
causality and renders the Dyson equation unsolvable.

The resolution of this problem within the formalism of
causal diagram technique requires one to define properly the

FIG. 18. �Color online� Schematic picture of all topologically
inequivalent diagrams of order �a� 1 /S and �b�–�d� 1 /S2, respec-
tively. The leading divergence in 1 /S diagrams is ln���� �first dia-
gram in �a�� and in 1 /S2 order it is �ln�����2 �all diagrams in �d��.
First two diagrams in �d� are identical.
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energy conservation for particles with finite lifetime. The
self-energy �D5� is the result of integrating the bubblelike
diagram over the internal frequency. Specifically, assuming
for simplicity that the decay is into particles of the same
species, one can write

��k,�� = i�
q
�

�

�Vk,q�2

�� − � − �k−q + i0��� − �q + i0�
,

�D6�

where ����d� /2
. This step seems to make the problem
even worse: substituting �= �̃k− i�k in Eq. �D6� shifts the
pole of the first Green’s function into the wrong half plane,
which renders the integral over internal frequency zero.

Making one more step back we recall that Eq. �D6� comes
from the standard diagrammatic expression that explicitly
reflects the conservation of energy within the decay process

��k,�� = i�
q
�

�
�

�1

�Vk,q�2��� − �1 − ��
��1 − �k−q + i0��� − �q + i0�

.

�D7�

Integrating Eq. �D7� over �1 gives Eq. �D6�. Now, the only
place where “external” energy � enters the self-energy is the
� function. Thus, one needs to generalize the � function in
Eq. �D7� for the case when � turns complex. An obvious
trick is to represent the � function by the Lorentzian of width
�k. Then one can rewrite ��k ,�� for �= �̃k− i�k as

��k,�� = i�
q
�

�
�

�1

�Vk,q�22�k

��̃k − �1 − ��2 + �k
2

�
1

��1 − �k−q + i0��� − �q + i0�
. �D8�

Note, that the above expression does respect the causality.
Integrating it by standard means we obtain the desired well-
behaved result

��k,�� = �
q

�Vk,q�2

�̃k − �q − �k−q + i�k
. �D9�

One can see that starting from the basic diagrammatic rules
we obtain the result for the self-energy with the “wrong” sign
of the imaginary part of the energy of the decaying particle.
This resolves the problem. In the form �D9� the self-energy
has the quasiparticle pole in the correct �lower� half plane
and yields the correct sign of �k in the Dyson equation.
Thus, the prescription is: the energy of the decaying particle
in the self-energy �D5� should be taken from the advanced
Green’s function. The “proper” Dyson equation then reads as

� − �k − ��k,��� = 0 �D10�

for complex �= �̃k− i�k.
Using the Matsubara technique, the problem is resolved

without any tricks with the � function, but simply by forcing
all the poles to be in the correct half plane. This does not
give any additional insight, but means that the retarded self-
energy simply corresponds to the complex conjugation of �:
�ret�k , �̃k− i�k����k , �̃k+ i�k�. Thus, one can write the

Dyson equation in an explicitly self-consistent form as

�̃k − i�k − �k − ��k,�̃k + i�k� = 0, �D11�

with ��k ,�� from Eq. �D5�. Changing �k to an infinitesimal
�, this expression is nothing but the standard Dyson equation
obtained from the Matsubara approach �see Eqs. �3.140�–
�3.142� of Ref. 54�.

APPENDIX E: QUASIPARTICLE RESIDUE

Here we discuss an extension of the definition of the qua-
siparticle residue to the case of a particle with a finite life-
time. The concept of the quasiparticle residue is introduced
in the context of the problem of interacting particles where it
is assumed that after “dressing” the Green’s function retains
a well-defined pole at low energy. Close to that pole one can
write the Green’s function in the main-pole approximation

Gk��� 

Zk

� − �̃k + i0
+ Gk

incoh��� , �E1�

where the incoherent part of the Green’s function Gk
incoh��� is

regular at the “new” quasiparticle energy �= �̃k and Zk is the
quasiparticle residue, Zk�1. Zk is also the weight associated
with the �-functional peak of the Green’s function at �= �̃k.
We wish to extend this to the case when the quasiparticle has
a finite lifetime. In other words, we hope to be able to write

Gk��� =
1

� − �k − �k���



Zk

� − �̃k + i�k
+ Gk

incoh��� .

�E2�

To get from the left-hand side to the right-hand side we need
to assume that there exist a solution of the Dyson equation

� − �k − �k��� = 0 �E3�

at some complex �= �̃k− i�k, where

�̃k = �k + Re��k��̃k − i�k�� , �E4�

�k = − Im��k��̃k − i�k�� . �E5�

Then, as in the standard approach, we proceed by adding and
subtracting �k��̃k− i�k�= �̃k−�k− i�k to the denominator of
Gk���,

Gk��� =
1

� − �k − �k���

=
1

� − �̃k + i�k − ��k��� − �k��̃k − i�k��
. �E6�

This can be rewritten without approximation as

Gk��� �
1

� − �̃k + i�k

1 − ��k��� − �k��̃k − i�k�

� − �̃k + i�k
��−1

.

�E7�

Near the pole, �→ �̃k− i�k, this expression finally yields
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Gk��� 

Zk

� − �̃k + i�k
, �E8�

where

Zk � 
1 − � ��k���
�� �

�=�̃k−i�k

�−1

, �E9�

which coincides with the standard definition of Zk up to the
change of �̃k to �̃k− i�k.54 Therefore, generally speaking, the
quasiparticle residue obtained this way is complex. However,
one would prefer to have Zk real in accord with the expec-
tation that the area under the Lorentzian �broadened � peak�
should give the quasiparticle weight. For that, let us consider
the spectral function

Ak��� =
1



� �k Re�Zk�

�� − �̃k�2 + �k
2 −

�� − �̃k�Im�Zk�
�� − �̃k�2 + �k

2 � ,

�E10�

where the first term has the Lorentzian form while the second
one vanishes at �k= �̃k. Clearly, the second part of the ex-
pression is odd in � and the spectral weight of the quasipar-
ticle peak, which is given by the integral of Ak��� along the
real axis,

�
−�

�

Ak���d� � Re�Zk� , �E11�

is simply the real part of Zk in Eq. �E9�. This gives a proper
definition of the “generalized” quasiparticle residue

Zk � Re�
1 − � ��k���
�� �

�=�̃k−i�k

�−1� . �E12�

Interestingly, this definition differs from the one in Ref. 54.
Our interest in this problem is twofold. First, we deal with

quasiparticles that have finite damping due to decays. Sec-
ond, the decay part of the self-energy, Eq. �33�, near the log
singularity has derivatives that are even more singular. In
particular, an attempt to calculate the quasiparticle residue
using the on-shell approach near the saddle-point singularity
k→k� leads to

� ��11
�a��k,��
��

�
�k

= −
1

2�
q

�̃1�q;k�2

��k − �q − �k−q + i0�2 ,

whose imaginary part is divergent as ��k−k��−1 and the real
part has a �-function singularity at k=k�. If, on the other
hand, one uses the solution of the Dyson equation together
with our more general definition of Zk �Eq. �E12��, the result
becomes regular. This is yet another way of saying that the
1 /S expansion in the noncollinear AFs is singular and the
usual on-shell approach cannot be used.

Interestingly, the off-shell consideration gives, after some
algebra, that in the large-S limit, at the singular k points
��� /����1 / ln S. This means that the quasiparticle residue
reaches the classical limit �=1� very slowly as

Zk 
 �1 −
A

ln S
�−1

at these points.
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